Benchmarking

  • Benchmarking Speech-to-Text Models for Medical Dialogue


    I benchmarked 26 local + cloud Speech-to-Text models on long-form medical dialogue and ranked them + open-sourced the full evalA comprehensive benchmarking of 26 speech-to-text (STT) models was conducted on long-form medical dialogue using the PriMock57 dataset, consisting of 55 files and over 81,000 words. The models were ranked based on their average Word Error Rate (WER), with Google Gemini 2.5 Pro leading at 10.79% and Parakeet TDT 0.6B v3 emerging as the top local model at 11.9% WER. The evaluation also considered processing time per file and noted issues such as repetition-loop failures in some models, which required chunking to mitigate. The full evaluation, including code and a complete leaderboard, is available on GitHub, providing valuable insights for developers working on medical transcription technology. This matters because accurate and efficient STT models are crucial for improving clinical documentation and reducing the administrative burden on healthcare professionals.

    Read Full Article: Benchmarking Speech-to-Text Models for Medical Dialogue

  • Zero-Setup Agent for LLM Benchmarking


    A zero-setup agent that benchmarks multiple open / closed source LLMs on your specific problem / dataAn innovative agent has been developed to streamline the process of benchmarking multiple open and closed source Large Language Models (LLMs) on specific problems or datasets. By simply loading a dataset and defining the problem, the agent can prompt various LLMs to evaluate their performance, as demonstrated with the TweetEval tweet emoji prediction task. The agent facilitates dataset curation, model inference, and analysis of predictions, while also enabling benchmarking of additional models to compare their relative performance. Notably, in a particular task, the open-source Llama-3-70b model outperformed closed-source models like GPT-4o and Claude-3.5, highlighting the potential of open-source solutions. This matters because it simplifies the evaluation of LLMs, enabling more efficient selection of the best model for specific tasks.

    Read Full Article: Zero-Setup Agent for LLM Benchmarking

  • Unexpected Vulkan Speedup in LLM Benchmarking


    Benchmarking local llms for speed with CUDA and vulkan, found an unexpected speedup for select modelsBenchmarking local language models (LLMs) on a 3080 10GB GPU revealed that while CUDA generally outperforms Vulkan in token generation rates, certain models show unexpected speed improvements with Vulkan. Notably, the GLM4 9B Q6 model experienced a 2.2x speedup in prompt processing and a 1.7x speedup in token generation using Vulkan. Similarly, the Ministral3 14B 2512 Q4 model saw a significant 4.4x speedup in prompt processing and a 1.6x speedup in token generation. These findings suggest that Vulkan may offer performance benefits for specific models, particularly when partially offloaded to the GPU. This matters as it highlights potential optimizations for developers working with LLMs on different hardware configurations.

    Read Full Article: Unexpected Vulkan Speedup in LLM Benchmarking

  • RTX PRO 6000 Performance with MiniMax M2.1


    Single RTX PRO 6000 - Minimax M2.1 (IQ2_M) speedThe performance of the RTX PRO 6000 when running the MiniMax M2.1 model varies significantly based on the context size. Using llama-server with specific parameters, the model's prompt evaluation speed ranged from 23.09 to 1695.32 tokens per second, while the evaluation speed ranged from 30.02 to 91.17 tokens per second. The data indicates that larger context sizes result in slower processing speeds for both prompt and general evaluations. Understanding these speed variations is crucial for optimizing model performance and resource allocation in machine learning applications.

    Read Full Article: RTX PRO 6000 Performance with MiniMax M2.1

  • RPC-server llama.cpp Benchmarks


    RPC-server llama.cpp benchmarksThe llama.cpp RPC server facilitates distributed inference of large language models (LLMs) by offloading computations to remote instances across multiple machines or GPUs. Benchmarks were conducted on a local gigabit network utilizing three systems and five GPUs, showcasing the server's performance in handling different model sizes and parameters. The systems included a mix of AMD and Intel CPUs, with GPUs such as GTX 1080Ti, Nvidia P102-100, and Radeon RX 7900 GRE, collectively providing a total of 53GB VRAM. Performance tests were conducted on various models, including Nemotron-3-Nano-30B and DeepSeek-R1-Distill-Llama-70B, highlighting the server's capability to efficiently manage complex computations across distributed environments. This matters because it demonstrates the potential for scalable and efficient LLM deployment in distributed computing environments, crucial for advancing AI applications.

    Read Full Article: RPC-server llama.cpp Benchmarks

  • NVIDIA Blackwell Boosts AI Training Speed and Efficiency


    NVIDIA Blackwell Enables 3x Faster Training and Nearly 2x Training Performance Per Dollar than Previous-Gen ArchitectureNVIDIA's Blackwell architecture is revolutionizing AI model training by offering up to 3.2 times faster training performance and nearly doubling training performance per dollar compared to previous-generation architectures. This is achieved through innovations across GPUs, CPUs, networking, and software, including the introduction of NVFP4 precision. The GB200 NVL72 and GB300 NVL72 GPUs demonstrate significant performance improvements in MLPerf benchmarks, allowing AI models to be trained and deployed more quickly and cost-effectively. These advancements enable AI developers to accelerate their revenue generation by bringing sophisticated models to market faster and more efficiently. This matters because it enhances the ability to train larger, more complex AI models while reducing costs, thus driving innovation and economic opportunities in the AI industry.

    Read Full Article: NVIDIA Blackwell Boosts AI Training Speed and Efficiency

  • MiniMaxAI/MiniMax-M2.1: Strongest Model Per Param


    MiniMaxAI/MiniMax-M2.1 seems to be the strongest model per paramMiniMaxAI/MiniMax-M2.1 demonstrates impressive performance on the Artificial Analysis benchmarks, rivaling models like Kimi K2 Thinking, Deepseek 3.2, and GLM 4.7. Remarkably, MiniMax-M2.1 achieves this with only 229 billion parameters, which is significantly fewer than its competitors; it has about half the parameters of GLM 4.7, a third of Deepseek 3.2, and a fifth of Kimi K2 Thinking. This efficiency suggests that MiniMaxAI/MiniMax-M2.1 offers the best value among current models, combining strong performance with a smaller parameter size. This matters because it highlights advancements in AI efficiency, making powerful models more accessible and cost-effective.

    Read Full Article: MiniMaxAI/MiniMax-M2.1: Strongest Model Per Param

  • Sirius GPU Engine Sets ClickBench Records


    NVIDIA CUDA-X Powers the New Sirius GPU Engine for DuckDB, Setting ClickBench RecordsSirius, a GPU-native SQL engine developed by the University of Wisconsin-Madison with NVIDIA's support, has set a new performance record on ClickBench, an analytics benchmark. By integrating with DuckDB, Sirius leverages GPU acceleration to deliver higher performance, throughput, and cost efficiency compared to traditional CPU-based databases. Utilizing NVIDIA CUDA-X libraries, Sirius enhances query execution speed without altering DuckDB's codebase, making it a seamless addition for users. Future plans for Sirius include improving GPU memory management, file readers, and scaling to multi-node architectures, aiming to advance the open-source analytics ecosystem. This matters because it demonstrates the potential of GPU acceleration to significantly enhance data analytics performance and efficiency.

    Read Full Article: Sirius GPU Engine Sets ClickBench Records

  • New Benchmark for Auditory Intelligence


    From Waveforms to Wisdom: The New Benchmark for Auditory IntelligenceSound plays a crucial role in multimodal perception, essential for systems like voice assistants and autonomous agents to function naturally. These systems require a wide range of auditory capabilities, including transcription, classification, and reasoning, which depend on transforming raw sound into an intermediate representation known as embedding. However, research in this area has been fragmented, with key questions about cross-domain performance and the potential for a universal sound embedding remaining unanswered. To address these challenges, the Massive Sound Embedding Benchmark (MSEB) was introduced, providing a standardized evaluation framework for eight critical auditory capabilities. This benchmark aims to unify research efforts by allowing seamless integration and evaluation of various model types, setting clear performance goals to identify opportunities for advancement beyond current technologies. Initial findings indicate significant potential for improvement across all tasks, suggesting that existing sound representations are not yet universal. This matters because enhancing auditory intelligence in machines can lead to more effective and natural interactions in numerous applications, from personal assistants to security systems.

    Read Full Article: New Benchmark for Auditory Intelligence

  • FACTS Benchmark Suite for LLM Evaluation


    FACTS Benchmark Suite: Systematically evaluating the factuality of large language modelsThe FACTS Benchmark Suite aims to enhance the evaluation of large language models (LLMs) by measuring their factual accuracy across various scenarios. It introduces three new benchmarks: the Parametric Benchmark, which tests models' internal knowledge through trivia-style questions; the Search Benchmark, which evaluates the ability to retrieve and synthesize information using search tools; and the Multimodal Benchmark, which assesses models' capability to answer questions related to images accurately. Additionally, the original FACTS Grounding Benchmark has been updated to version 2, focusing on context-based answer grounding. The suite comprises 3,513 examples, with a FACTS Score calculated from both public and private sets. Kaggle will manage the suite, including the private sets and public leaderboard. This initiative is crucial for advancing the factual reliability of LLMs in diverse applications.

    Read Full Article: FACTS Benchmark Suite for LLM Evaluation