Deep Dives

  • Scaling to 11M Embeddings: Product Quantization Success


    Scaling to 11 Million Embeddings: How Product Quantization Saved My Vector InfrastructureHandling 11 million embeddings in a large-scale knowledge graph project presented significant challenges in terms of storage, cost, and performance. The Gemini-embeddings-001 model was chosen for its strong semantic representations, but its high dimensionality led to substantial storage requirements. Storing these embeddings in Neo4j resulted in a prohibitive monthly cost of $32,500 due to the high memory footprint. To address this, Product Quantization (PQ), specifically PQ64, was implemented, reducing storage needs by approximately 192 times, bringing the total storage requirement to just 0.704 GB. While there are concerns about retrieval accuracy with such compression, PQ64 maintained a recall@10 of 0.92, with options like PQ128 available for even higher accuracy. This matters because it demonstrates a scalable and cost-effective approach to managing large-scale vector data without significantly compromising performance.

    Read Full Article: Scaling to 11M Embeddings: Product Quantization Success

  • Introducing the nanoRLHF Project


    Introducing nanoRLHF project!nanoRLHF is a project designed to implement core components of Reinforcement Learning from Human Feedback (RLHF) using PyTorch and Triton. It offers educational reimplementations of large-scale systems, focusing on clarity and core concepts rather than efficiency. The project includes minimal Python implementations and custom Triton kernels, such as Flash Attention, and provides training pipelines using open-source math datasets to train a Qwen3 model. This initiative serves as a valuable learning resource for those interested in understanding the internal workings of RL training frameworks. Understanding RLHF is crucial as it enhances AI systems' ability to learn from human feedback, improving their performance and adaptability.

    Read Full Article: Introducing the nanoRLHF Project

  • Improving RAG Systems with Semantic Firewalls


    RAG is lazy. We need to stop treating the context window like a junk drawer.In the GenAI space, the common approach to building Retrieval-Augmented Generation (RAG) systems involves embedding data, performing a semantic search, and stuffing the context window with top results. This approach often leads to confusion as it fills the model with technically relevant but contextually useless data. A new method called "Scale by Subtraction" proposes using a deterministic Multidimensional Knowledge Graph to filter out noise before the language model processes the data, significantly reducing noise and hallucination risk. By focusing on critical and actionable items, this method enhances the model's efficiency and accuracy, offering a more streamlined approach to RAG systems. This matters because it addresses the inefficiencies in current RAG systems, improving the accuracy and reliability of AI-generated responses.

    Read Full Article: Improving RAG Systems with Semantic Firewalls

  • Benchmarking 4-bit Quantization in vLLM


    We benchmarked every 4-bit quantization method in vLLM 👀A comprehensive analysis of vLLM quantization methods reveals varied performance across different techniques. Marlin achieved the highest token processing speed at 712 tokens per second, significantly outperforming the baseline FP16's 461 tok/s, while GPTQ without Marlin's kernel lagged behind at 276 tok/s. BitsandBytes maintained the smallest quality drop and required no pre-quantized weights, whereas GGUF had the worst perplexity but excelled in HumanEval scores. AWQ showed unexpectedly slow performance in vLLM, processing only 67 tok/s. Understanding these differences is crucial for optimizing model efficiency and performance in machine learning applications.

    Read Full Article: Benchmarking 4-bit Quantization in vLLM

  • SimpleLLM: Minimal LLM Inference Engine


    SimpleLLM — a minimal (~950 LOC) LLM inference engine built from scratchSimpleLLM is a lightweight language model inference engine designed to maximize GPU utilization through an asynchronous processing loop that batches requests for optimal throughput. The engine demonstrates impressive performance, achieving 135 tokens per second with a batch size of 1 and over 4,000 tokens per second with a batch size of 64. Currently, it supports only the OpenAI/gpt-oss-120b model on a single NVIDIA H100 GPU. This matters because it provides an efficient and scalable solution for deploying large language models, potentially reducing costs and increasing accessibility for developers.

    Read Full Article: SimpleLLM: Minimal LLM Inference Engine

  • Open-Sourcing Papr’s Predictive Memory Layer


    Friday Night Experiment: I Let a Multi-Agent System Decide Our Open-Source Fate. The Result Surprised Me.A multi-agent reinforcement learning system was developed to determine whether Papr should open-source its predictive memory layer, which achieved a 92% score on Stanford's STARK benchmark. The system involved four stakeholder agents and ran 100,000 Monte Carlo simulations, revealing that 91.5% favored an open-core approach, showing a significant average net present value (NPV) advantage of $109M compared to $10M for a proprietary strategy. The decision to open-source was influenced by deeper memory agents favoring open-core, while shallow memory agents preferred proprietary options. The open-source move aims to accelerate adoption and leverage community contributions while maintaining strategic safeguards for monetization through premium features and ecosystem partnerships. This matters because it highlights the potential of AI-driven decision-making systems in strategic business decisions, particularly in the context of open-source versus proprietary software models.

    Read Full Article: Open-Sourcing Papr’s Predictive Memory Layer

  • Grounding Qwen3-VL Detection with SAM2


    [Tutorial] Grounding Qwen3-VL Detection with SAM2Combining the object detection prowess of Qwen3-VL with the segmentation capabilities of SAM2 allows for enhanced performance in complex computer vision tasks. Qwen3-VL is adept at detecting objects, while SAM2 excels in segmenting a diverse range of objects, making their integration particularly powerful. This synergy enables more precise and comprehensive analysis of visual data, which can be crucial for applications requiring detailed image understanding. This matters because it advances the capabilities of computer vision systems, potentially improving applications in fields like autonomous driving, surveillance, and medical imaging.

    Read Full Article: Grounding Qwen3-VL Detection with SAM2

  • AI’s Impact on Healthcare Efficiency and Accuracy


    My attempt at creating some non perfect looking photos with chatgpt that are not super obviously ai generatedAI is transforming healthcare by streamlining administrative tasks, enhancing diagnostic accuracy, and personalizing patient care. It is expected to reduce the administrative burden on healthcare professionals, improve efficiency, and decrease burnout through tools like AI scribes and ambient technology. AI can also optimize hospital logistics, automate insurance approvals, and enhance diagnostic processes by quickly analyzing medical images and providing accurate early diagnoses. Furthermore, AI is poised to improve patient care by enabling personalized medication plans, creating home care plans, and offering AI-powered symptom checkers and triage assistants. While the potential benefits are significant, challenges remain in safely integrating AI into healthcare systems. This matters because AI has the potential to significantly improve healthcare efficiency, accuracy, and patient outcomes, but its integration must be carefully managed to address existing challenges.

    Read Full Article: AI’s Impact on Healthcare Efficiency and Accuracy

  • Using Amazon Bedrock: A Developer’s Guide


    Practical notes on using Amazon Bedrock (from a dev perspective)Python remains the leading programming language for machine learning due to its comprehensive libraries and versatility. For tasks requiring high performance, C++ and Rust are favored, with Rust offering additional safety features. Julia is noted for its performance, though its adoption is slower. Kotlin, Java, and C# are utilized for platform-specific applications, while Go, Swift, and Dart are chosen for their ability to compile to native code. R and SQL are essential for statistical analysis and data management, respectively, and CUDA is employed for GPU programming to enhance machine learning speeds. JavaScript is commonly used for integrating machine learning into web projects. Understanding the strengths of these languages helps developers choose the right tool for their specific machine learning needs.

    Read Full Article: Using Amazon Bedrock: A Developer’s Guide

  • Predicting Suicide Risk with Llama-3.1-8B


    Using Llama-3.1-8B’s perplexity scores to predict suicide risk (preprint + code)A recent study utilized the Llama-3.1-8B language model to predict suicide risk by analyzing perplexity scores from narratives about individuals' future selves. By generating two potential future scenarios—one involving a crisis and one without—and assessing which was more linguistically plausible based on interview transcripts, researchers could identify individuals at high risk for suicidal ideation. Remarkably, this method identified 75% of high-risk individuals that traditional medical questionnaires missed, demonstrating the potential for language models to enhance early detection of mental health risks. This matters because it highlights a novel approach to improving mental health interventions and potentially saving lives through advanced AI analysis.

    Read Full Article: Predicting Suicide Risk with Llama-3.1-8B