quantization
-
Benchmarking 4-bit Quantization in vLLM
Read Full Article: Benchmarking 4-bit Quantization in vLLM
A comprehensive analysis of vLLM quantization methods reveals varied performance across different techniques. Marlin achieved the highest token processing speed at 712 tokens per second, significantly outperforming the baseline FP16's 461 tok/s, while GPTQ without Marlin's kernel lagged behind at 276 tok/s. BitsandBytes maintained the smallest quality drop and required no pre-quantized weights, whereas GGUF had the worst perplexity but excelled in HumanEval scores. AWQ showed unexpectedly slow performance in vLLM, processing only 67 tok/s. Understanding these differences is crucial for optimizing model efficiency and performance in machine learning applications.
-
DeepSeek V3.2: Dense Attention Model
Read Full Article: DeepSeek V3.2: Dense Attention Model
DeepSeek V3.2 with dense attention is now available for use on regular llama.cpp builds without requiring extra support. The model is compatible with Q8_0 and Q4_K_M quantization levels and can be run using a specific jinja template. Performance testing using the lineage-bench on Q4_K_M quant showed impressive results, with the model making only two errors at the most challenging graph size of 128, outperforming the original version with sparse attention. Disabling sparse attention does not seem to negatively impact the model's intelligence, offering a robust alternative for users. This matters because it highlights advancements in model efficiency and usability, allowing for broader application without sacrificing performance.
-
MiniMax M2.1 Quantization: Q6 vs. Q8 Experience
Read Full Article: MiniMax M2.1 Quantization: Q6 vs. Q8 Experience
Using Bartowski's Q6_K quantization of MiniMax M2.1 on llama.cpp's server led to difficulties in generating accurate unit tests for a function called interval2short(), which formats time intervals into short strings. The Q6 quantization struggled to correctly identify the output format, often engaging in extensive and redundant processing without arriving at the correct result. In contrast, upgrading to Q8 quantization resolved these issues efficiently, achieving correct results with fewer tokens. Despite the advantage of Q6 fitting entirely in VRAM, the performance of Q8 suggests it may be worth the extra effort to manage GPU allocations for better accuracy. This matters because choosing the right model quantization can significantly impact the efficiency and accuracy of coding tasks.
-
Cook High Quality Custom GGUF Dynamic Quants Online
Read Full Article: Cook High Quality Custom GGUF Dynamic Quants Online
A new web front-end has been developed to simplify the process of creating high-quality dynamic GGUF quants, eliminating the need for command-line interaction. This browser-based tool allows users to upload or select calibration/deg CSVs, adjust advanced settings through an intuitive user interface, and quickly export a custom .recipe tailored to their hardware. The process involves three easy steps: generating a GGUF recipe, downloading the GGUF files, and running them on any GGUF-compatible runtime. This approach makes GGUF quantization more accessible by removing the complexities associated with terminal use and dependency management. This matters because it democratizes access to advanced quantization tools, making them usable for a wider audience without technical barriers.
-
Guide to Deploying ML Models on Edge Devices
Read Full Article: Guide to Deploying ML Models on Edge Devices
"Ultimate ONNX for Deep Learning Optimization" is a comprehensive guide aimed at ML Engineers and Embedded Developers, focusing on deploying machine learning models to resource-constrained edge devices. The book addresses the challenges of moving models from research to production, offering a detailed workflow from model export to deployment. It covers ONNX fundamentals, optimization techniques such as quantization and pruning, and practical tools like ONNX Runtime. Real-world case studies are included, demonstrating the deployment of models like YOLOv12 and Whisper on devices like the Raspberry Pi. This guide is essential for those looking to optimize deep learning models for speed and efficiency without compromising accuracy. This matters because effectively deploying machine learning models on edge devices can significantly enhance the performance and applicability of AI in real-world scenarios.
-
Qwen-Image-2512 MLX Ports for Apple Silicon
Read Full Article: Qwen-Image-2512 MLX Ports for Apple Silicon
Qwen-Image-2512, the latest text-to-image model from Qwen, is now available with MLX ports for Apple Silicon, offering five quantization levels ranging from 8-bit to 3-bit. These options allow users to run the model locally on their Mac, with sizes from 34GB for the 8-bit version down to 22GB for the 3-bit version. By installing the necessary tools via pip, users can generate images using prompts and specified steps, providing flexibility and accessibility for Mac users interested in advanced text-to-image generation. This matters as it enhances the capability for local AI-driven creativity on widely used Apple devices.
-
Tiny AI Models for Raspberry Pi
Read Full Article: Tiny AI Models for Raspberry Pi
Advancements in AI have enabled the development of tiny models that can run efficiently on devices with limited resources, such as the Raspberry Pi. These models, including Qwen3, Exaone, Ministral, Jamba Reasoning, Granite, and Phi-4 Mini, leverage modern architectures and quantization techniques to deliver high performance in tasks like text generation, vision understanding, and tool usage. Despite their small size, they outperform older, larger models in real-world applications, offering capabilities such as long-context processing, multilingual support, and efficient reasoning. These models demonstrate that compact AI systems can be both powerful and practical for low-power devices, making local AI inference more accessible and cost-effective. This matters because it highlights the potential for deploying advanced AI capabilities on everyday devices, broadening the scope of AI applications without the need for extensive computing infrastructure.
-
MiniMax M2 int4 QAT: Efficient AI Model Training
Read Full Article: MiniMax M2 int4 QAT: Efficient AI Model Training
MiniMax__AI's Head of Engineering discusses the innovative MiniMax M2 int4 Quantization Aware Training (QAT) technique. This method focuses on improving the efficiency and performance of AI models by reducing their size and computational requirements without sacrificing accuracy. By utilizing int4 quantization, the approach allows for faster processing and lower energy consumption, making it highly beneficial for deploying AI models on edge devices. This matters because it enables more accessible and sustainable AI applications in resource-constrained environments.
-
Llama.cpp: Native mxfp4 Support Boosts Speed
Read Full Article: Llama.cpp: Native mxfp4 Support Boosts Speed
The recent update to llama.cpp introduces experimental native mxfp4 support for Blackwell, resulting in a 25% preprocessing speedup compared to the previous version. While this update is currently 10% slower than the master version, it shows significant promise, especially for gpt-oss models. To utilize this feature, compiling with the flag -DCMAKE_CUDA_ARCHITECTURES="120f" is necessary. Although there are some concerns about potential correctness issues due to the quantization of activation to mxfp4 instead of q8, initial tests indicate no noticeable quality degradation in models like gpt-oss-120b. This matters because it enhances processing efficiency, potentially leading to faster and more efficient AI model training and deployment.
-
Google’s FunctionGemma: AI for Edge Function Calling
Read Full Article: Google’s FunctionGemma: AI for Edge Function Calling
Google has introduced FunctionGemma, a specialized version of the Gemma 3 270M model, designed specifically for function calling and optimized for edge workloads. FunctionGemma retains the Gemma 3 architecture but focuses on translating natural language into executable API actions rather than general chat. It uses a structured conversation format with control tokens to manage tool definitions and function calls, ensuring reliable tool use in production. The model, trained on 6 trillion tokens, supports a 256K vocabulary optimized for JSON and multilingual text, enhancing token efficiency. FunctionGemma's primary deployment target is edge devices like phones and laptops, benefiting from its compact size and quantization support for low-latency, low-memory inference. Demonstrations such as Mobile Actions and Tiny Garden showcase its ability to perform complex tasks on-device without server calls, achieving up to 85% accuracy after fine-tuning. This development signifies a step forward in creating efficient, localized AI solutions that can operate independently of cloud infrastructure, crucial for privacy and real-time applications.
