llama.cpp

  • Optimizing Llama.cpp for Local LLM Performance


    OK I get it, now I love llama.cppSwitching from Ollama to llama.cpp can significantly enhance performance for running large language models (LLMs) on local hardware, especially when resources are limited. With a setup consisting of a single 3060 12GB GPU and three P102-100 GPUs, totaling 42GB of VRAM, alongside 96GB of system RAM and an Intel i7-9800x, careful tuning of llama.cpp commands can make a substantial difference. Tools like ChatGPT and Google AI Studio can assist in optimizing settings, demonstrating that understanding and adjusting commands can lead to faster and more efficient LLM operation. This matters because it highlights the importance of configuration and optimization in maximizing the capabilities of local hardware for AI tasks.

    Read Full Article: Optimizing Llama.cpp for Local LLM Performance

  • Critical Vulnerability in llama.cpp Server


    llama.cpp has Out-of-bounds Write in llama-serverllama.cpp, a C/C++ implementation for running large language models, has a critical vulnerability in its server's completion endpoints. The issue arises from the n_discard parameter, which is parsed from JSON input without validation to ensure it is non-negative. If a negative value is used, it can lead to out-of-bounds memory writes during token evaluation, potentially crashing the process or allowing remote code execution. This vulnerability is significant as it poses a security risk for users running llama.cpp, and there is currently no fix available. Understanding and addressing such vulnerabilities is crucial to maintaining secure systems and preventing exploitation.

    Read Full Article: Critical Vulnerability in llama.cpp Server

  • Llama.cpp vs Ollama: Code Generation Throughput


    llama.cpp vs Ollama: ~70% higher code generation throughput on Qwen-3 Coder 32B (FP16)A notable performance discrepancy has been observed between llama.cpp and Ollama in terms of code generation throughput when running the Qwen-3 Coder 32B model locally. The analysis reveals that llama.cpp achieves approximately 70% higher throughput compared to Ollama, despite both using the same model weights and hardware. Potential reasons for this difference include variations in CUDA kernels, attention implementations, context or batching defaults, scheduler or multi-GPU utilization, and overhead from Ollama's runtime or API layer. Understanding these differences is crucial for optimizing performance in machine learning applications. This matters because optimizing code generation throughput can significantly impact computational efficiency and resource utilization in AI model deployment.

    Read Full Article: Llama.cpp vs Ollama: Code Generation Throughput

  • DeepSeek V3.2: Dense Attention Model


    DeepSeek V3.2 with dense attention (disabled lightning attention) GGUF availableDeepSeek V3.2 with dense attention is now available for use on regular llama.cpp builds without requiring extra support. The model is compatible with Q8_0 and Q4_K_M quantization levels and can be run using a specific jinja template. Performance testing using the lineage-bench on Q4_K_M quant showed impressive results, with the model making only two errors at the most challenging graph size of 128, outperforming the original version with sparse attention. Disabling sparse attention does not seem to negatively impact the model's intelligence, offering a robust alternative for users. This matters because it highlights advancements in model efficiency and usability, allowing for broader application without sacrificing performance.

    Read Full Article: DeepSeek V3.2: Dense Attention Model

  • Open-Source AI Tools Boost NVIDIA RTX PC Performance


    Open-Source AI Tool Upgrades Speed Up LLM and Diffusion Models on NVIDIA RTX PCsAI development on PCs is rapidly advancing, driven by improvements in small language models (SLMs) and diffusion models, and supported by enhanced AI frameworks like ComfyUI, llama.cpp, and Ollama. These frameworks have seen significant popularity growth, with NVIDIA announcing updates to further accelerate AI workflows on RTX PCs. Key optimizations include support for NVFP4 and FP8 formats, boosting performance and memory efficiency, and new features for SLMs to enhance token generation and model inference. Additionally, NVIDIA's collaboration with the open-source community has led to the release of the LTX-2 audio-video model and tools for agentic AI development, such as Nemotron 3 Nano and Docling, which improve accuracy and efficiency in AI applications. This matters because it empowers developers to create more advanced and efficient AI solutions on consumer-grade hardware, democratizing access to cutting-edge AI technology.

    Read Full Article: Open-Source AI Tools Boost NVIDIA RTX PC Performance

  • Miro Thinker 1.5: Advancements in Llama AI


    Miromind_ai released Miro Thinker 1.5The Llama AI technology has recently undergone significant advancements, including the release of Llama 3.3 8B Instruct in GGUF format by Meta, and the availability of a Llama API for developers to integrate these models into their applications. Improvements in Llama.cpp have also been notable, with enhancements such as increased processing speed, a new web UI, a comprehensive CLI overhaul, and support for model swapping without external software. Additionally, a new router mode in Llama.cpp aids in efficiently managing multiple models. These developments highlight the ongoing evolution and potential of Llama AI technology, despite facing some challenges and criticisms. This matters because it showcases the rapid progress and adaptability of AI technologies, which can significantly impact various industries and applications.

    Read Full Article: Miro Thinker 1.5: Advancements in Llama AI

  • Backend Sampling Merged into llama.cpp


    backend sampling has been merged into llama.cppBackend sampling has been incorporated into llama.cpp, allowing sampling to be directly integrated into the computation graph on backends such as CUDA. This integration can potentially minimize the need for data transfers between the GPU and CPU, enhancing efficiency and performance. By reducing these data transfers, computational processes can become more streamlined, leading to faster and more efficient machine learning operations. This matters because it can significantly optimize resource usage and improve the speed of machine learning tasks.

    Read Full Article: Backend Sampling Merged into llama.cpp

  • Web Control Center for llama.cpp


    I built a web control centre for llama.cpp with automatic parameter recommendationsA new web control center has been developed for managing llama.cpp instances more efficiently, addressing common issues such as optimal parameter calculation, port management, and log access. It features automatic hardware detection to recommend optimal settings like n_ctx, n_gpu_layers, and n_threads, and allows for multi-server management with a user-friendly interface. The system includes a built-in chat interface, performance benchmarking, and real-time log streaming, all built on a FastAPI backend and Vanilla JS frontend. The project seeks feedback on parameter recommendations, testing on various hardware setups, and ideas for enterprise features, with potential for future monetization through GitHub Sponsors and Pro features. This matters because it streamlines the management of llama.cpp instances, enhancing efficiency and performance for users.

    Read Full Article: Web Control Center for llama.cpp

  • Guide: Running Llama.cpp on Android


    Llama.cpp running on Android with Snapdragon 888 and 8GB of ram. Compiled/Built on device. [Guide/Tutorial]Running Llama.cpp on an Android device with a Snapdragon 888 and 8GB of RAM involves a series of steps beginning with downloading Termux from F-droid. After setting up Termux, the process includes cloning the Llama.cpp repository, installing necessary packages like cmake, and building the project. Users need to select a quantized model from HuggingFace, preferably a 4-bit version, and configure the server command in Termux to launch the model. Once the server is running, it can be accessed via a web browser by navigating to 'localhost:8080'. This guide is significant as it enables users to leverage advanced AI models on mobile devices, enhancing accessibility and flexibility for developers and enthusiasts.

    Read Full Article: Guide: Running Llama.cpp on Android

  • Lynkr – Multi-Provider LLM Proxy


    Lynkr - Multi-Provider LLM ProxyThe landscape of local Large Language Models (LLMs) is rapidly advancing, with llama.cpp emerging as a preferred choice among redditors for its superior performance, transparency, and features compared to Ollama. While several local LLMs have proven effective for various tasks, the latest Llama models have received mixed reviews. The rising costs of hardware, especially VRAM and DRAM, pose challenges for running local LLMs. For those seeking further insights and community discussions, several subreddits offer valuable resources and support. Understanding these developments is crucial as they impact the accessibility and efficiency of AI technologies in local settings.

    Read Full Article: Lynkr – Multi-Provider LLM Proxy