AIGeekery
-
2026 Roadmap for AI Search & RAG Systems
Read Full Article: 2026 Roadmap for AI Search & RAG Systems
A practical roadmap for modern AI search and Retrieval-Augmented Generation (RAG) systems emphasizes the need for robust, real-world applications beyond basic vector databases and prompts. Key components include semantic and hybrid retrieval methods, explicit reranking layers, and advanced query understanding and intent recognition. The roadmap also highlights the importance of agentic RAG, which involves query decomposition and multi-hop processing, as well as maintaining data freshness and lifecycle management. Additionally, it addresses grounding and hallucination control, evaluation criteria beyond superficial correctness, and production concerns such as latency, cost, and access control. This roadmap is designed to be language-agnostic and focuses on system design rather than specific frameworks. Understanding these elements is crucial for developing effective and efficient AI search systems that meet real-world demands.
-
Devstral Small 2 on RTX 5060 Ti: Local AI Coding Setup
Read Full Article: Devstral Small 2 on RTX 5060 Ti: Local AI Coding Setup
The setup featuring an RTX 5060 Ti 16GB and 32GB DDR5-6000 RAM, paired with the Devstral Small 2 model, offers impressive local AI coding capabilities without the need for RAM offloading. This configuration excels in maintaining a good token generation speed by fitting everything within the GPU's VRAM, effectively using the Zed Editor with Zed Agent for efficient code exploration and execution. Despite initial skepticism about handling a dense 24B model, the setup proves capable of generating and refining code, particularly when provided with detailed instructions, and operates at a cool temperature with minimal noise. This matters as it demonstrates the potential for high-performance local AI development without resorting to expensive hardware upgrades.
-
Benchmarking 4-bit Quantization in vLLM
Read Full Article: Benchmarking 4-bit Quantization in vLLM
A comprehensive analysis of vLLM quantization methods reveals varied performance across different techniques. Marlin achieved the highest token processing speed at 712 tokens per second, significantly outperforming the baseline FP16's 461 tok/s, while GPTQ without Marlin's kernel lagged behind at 276 tok/s. BitsandBytes maintained the smallest quality drop and required no pre-quantized weights, whereas GGUF had the worst perplexity but excelled in HumanEval scores. AWQ showed unexpectedly slow performance in vLLM, processing only 67 tok/s. Understanding these differences is crucial for optimizing model efficiency and performance in machine learning applications.
-
Belief Propagation: An Alternative to Backpropagation
Read Full Article: Belief Propagation: An Alternative to Backpropagation
Belief Propagation is presented as an intriguing alternative to backpropagation for training reasoning models, particularly in the context of solving Sudoku puzzles. This approach, highlighted in the paper 'Sinkhorn Solves Sudoku', is based on Optimal Transport theory, offering a method akin to performing a softmax operation without relying on derivatives. This method provides a fresh perspective on model training, potentially enhancing the efficiency and effectiveness of reasoning models. Understanding alternative training methods like Belief Propagation could lead to advancements in machine learning applications.
-
Optimizing SageMaker with OLAF for Efficient ML Testing
Read Full Article: Optimizing SageMaker with OLAF for Efficient ML Testing
Amazon SageMaker, a platform for building, training, and deploying machine learning models, can significantly reduce development time for generative AI and ML tasks. However, manual steps are still required for fine-tuning related services like queues and databases within inference pipelines. To address this, Observe.ai developed the One Load Audit Framework (OLAF), which integrates with SageMaker to identify bottlenecks and performance issues, enabling efficient load testing and optimization of ML infrastructure. OLAF, available as an open-source tool, helps streamline the testing process, reducing time from a week to a few hours, and supports scalable deployment of ML models. This matters because it allows organizations to optimize their ML operations efficiently, saving time and resources while ensuring high performance.
-
Three-Phase Evaluation for Synthetic Data in 4B Model
Read Full Article: Three-Phase Evaluation for Synthetic Data in 4B Model
An ongoing series of experiments is exploring evaluation methodologies for small fine-tuned models in synthetic data generation tasks, focusing on a three-phase blind evaluation protocol. This protocol includes a Generation Phase where multiple models, including a fine-tuned 4B model, respond to the same proprietary prompt, followed by an Analysis Phase where each model ranks the outputs based on coherence, creativity, logical density, and human-likeness. Finally, in the Aggregation Phase, results are compiled for overall ranking. The open-source setup aims to investigate biases in LLM-as-judge setups, trade-offs in niche fine-tuning, and the reproducibility of subjective evaluations, inviting community feedback and suggestions for improvement. This matters because it addresses the challenges of bias and reproducibility in AI model evaluations, crucial for advancing fair and reliable AI systems.
-
Advancements in Llama AI Technology 2025-2026
Read Full Article: Advancements in Llama AI Technology 2025-2026
In 2025 and early 2026, significant advancements in Llama AI technology have been marked by the maturation of open-source Vision-Language Models (VLMs), which are anticipated to be widely productized by 2026. Mixture of Experts (MoE) models have gained popularity, with users now operating models with 100-120 billion parameters, a significant increase from the previous year's 30 billion. Z.ai has emerged as a key player with models optimized for inference, while OpenAI's GPT-OSS has been lauded for its tool-calling capabilities. Additionally, Alibaba has expanded its offerings with a variety of models, and coding agents have demonstrated the undeniable potential of generative AI. This matters because these advancements reflect the rapid evolution and diversification of AI technologies, influencing a wide range of applications and industries.
-
AI21 Launches Jamba2 Models for Enterprises
Read Full Article: AI21 Launches Jamba2 Models for Enterprises
AI21 has launched Jamba2 3B and Jamba2 Mini, designed to offer enterprises cost-effective models for reliable instruction following and grounded outputs. These models excel in processing long documents without losing context, making them ideal for precise question answering over internal policies and technical manuals. With a hybrid SSM-Transformer architecture and KV cache innovations, they outperform competitors like Ministral3 and Qwen3 in various benchmarks, showcasing superior throughput at extended context lengths. Available through AI21's SaaS and Hugging Face, these models promise enhanced integration into production agent stacks. This matters because it provides businesses with more efficient AI tools for handling complex documentation and internal queries.
-
Google’s AI Inbox Enhances Gmail Management
Read Full Article: Google’s AI Inbox Enhances Gmail Management
Google is enhancing Gmail with a new "AI Inbox" feature designed to personalize user experiences and improve email management. This AI-driven tool, currently in beta testing, reads emails and generates a list of to-dos and key topics, helping users to quickly grasp the essential information from their inbox. By summarizing messages and suggesting actions, the AI Inbox aims to streamline communication and increase productivity. This matters because it represents a shift towards more efficient email management, potentially saving users time and reducing information overload.
