Agentic RAG

  • 2026 Roadmap for AI Search & RAG Systems


    A practical 2026 roadmap for modern AI search & RAG systemsA practical roadmap for modern AI search and Retrieval-Augmented Generation (RAG) systems emphasizes the need for robust, real-world applications beyond basic vector databases and prompts. Key components include semantic and hybrid retrieval methods, explicit reranking layers, and advanced query understanding and intent recognition. The roadmap also highlights the importance of agentic RAG, which involves query decomposition and multi-hop processing, as well as maintaining data freshness and lifecycle management. Additionally, it addresses grounding and hallucination control, evaluation criteria beyond superficial correctness, and production concerns such as latency, cost, and access control. This roadmap is designed to be language-agnostic and focuses on system design rather than specific frameworks. Understanding these elements is crucial for developing effective and efficient AI search systems that meet real-world demands.

    Read Full Article: 2026 Roadmap for AI Search & RAG Systems

  • Build a Local Agentic RAG System Tutorial


    I Finished a Fully Local Agentic RAG TutorialThe tutorial provides a comprehensive guide on building a fully local Agentic RAG system, eliminating the need for APIs, cloud services, or hidden costs. It covers the entire pipeline, including often overlooked aspects such as PDF to Markdown ingestion, hierarchical chunking, hybrid retrieval, and the use of Qdrant for vector storage. Additional features include query rewriting with human-in-the-loop, context summarization, and multi-agent map-reduce with LangGraph, all demonstrated through a simple Gradio user interface. This resource is particularly valuable for those who prefer hands-on learning to understand Agentic RAG systems beyond theoretical knowledge.

    Read Full Article: Build a Local Agentic RAG System Tutorial