hybrid retrieval

  • Hybrid Retrieval: BM25 + FAISS on t3.medium


    Production Hybrid Retrieval: 48% better accuracy with BM25 + FAISS on a single t3.mediumA hybrid retrieval system has been developed to efficiently serve over 127,000 queries on a single AWS Lightsail instance, combining the precision of BM25 with the semantic understanding of FAISS. This system operates without a GPU for embeddings, though a GPU can be used optionally for reranking to achieve a 3x speedup. The infrastructure is cost-effective, running on a t3.medium instance for approximately $50 per month, and achieves 91% accuracy, significantly outperforming dense-only methods. The hybrid approach effectively handles complex queries by using a four-stage cascade that combines keyword precision with semantic understanding, optimizing latency and accuracy through asynchronous parallel retrieval and batch reranking. This matters because it demonstrates a cost-effective, high-performance solution for query retrieval that balances precision and semantic understanding, crucial for applications requiring accurate and efficient information retrieval.

    Read Full Article: Hybrid Retrieval: BM25 + FAISS on t3.medium

  • Rapid Evolution of AI Models in 2024


    Looking back at end of 2024 vs nowRecent developments in agent systems and AI models have led to rapid advancements, making previous versions feel outdated in a short span of time. Notable progressions include the evolution of models such as GPT-4o to GPT-5.2 and Claude 3.5 to Claude 4.5, as well as significant improvements in agent logic, memory capabilities, tool use, workflows, observability, and integration protocols. These advancements reflect a shift towards more sophisticated and efficient systems, with features like stateful memory, hybrid retrieval methods, and standardized interfaces enhancing the functionality and security of AI applications. This matters because staying updated with these advancements is crucial for leveraging the full potential of AI technologies in various applications.

    Read Full Article: Rapid Evolution of AI Models in 2024

  • Build a Local Agentic RAG System Tutorial


    I Finished a Fully Local Agentic RAG TutorialThe tutorial provides a comprehensive guide on building a fully local Agentic RAG system, eliminating the need for APIs, cloud services, or hidden costs. It covers the entire pipeline, including often overlooked aspects such as PDF to Markdown ingestion, hierarchical chunking, hybrid retrieval, and the use of Qdrant for vector storage. Additional features include query rewriting with human-in-the-loop, context summarization, and multi-agent map-reduce with LangGraph, all demonstrated through a simple Gradio user interface. This resource is particularly valuable for those who prefer hands-on learning to understand Agentic RAG systems beyond theoretical knowledge.

    Read Full Article: Build a Local Agentic RAG System Tutorial