AI-driven logistics

  • Training a Model for Code Edit Predictions


    A deep dive into how I trained an edit model to show highly relevant code suggestions while programmingDeveloping a coding agent like NES, designed to predict the next change needed in a code file, is a complex task that requires understanding how developers write and edit code. The model considers the entire file and recent edit history to predict where and what the next change should be. Capturing real developer intent is challenging due to the messy nature of real commits, which often include unrelated changes and skip incremental steps. To train the edit model effectively, special edit tokens were used to define editable regions, cursor positions, and intended edits, allowing the model to predict the next code edit within a specified region. Data sources like CommitPackFT and Zeta were utilized, and the dataset was normalized into a unified format with filtering to remove non-sequential edits. The choice of base model for fine-tuning was crucial, with Gemini 2.5 Flash Lite selected for its ease of use and operational efficiency. This managed model avoids the overhead of running an open-source model and uses LoRA for lightweight fine-tuning, ensuring the model remains stable and cost-effective. Flash Lite enhances user experience by providing faster responses and lower compute costs, enabling frequent improvements without significant downtime or version drift. Evaluation of the edit model was conducted using the LLM-as-a-Judge metric, which assesses the semantic correctness and logical consistency of predicted edits. This approach is more aligned with human judgment than simple token-level comparisons, allowing for scalable and sensitive evaluation processes. To make the Next Edit Suggestions responsive, the model receives more than just the current file snapshot at inference time; it also includes the user's recent edit history and additional semantic context. This comprehensive input helps the model understand user intent and predict the next edit accurately. This matters because it enhances coding efficiency and accuracy, offering developers a more intuitive and reliable tool for code editing.

    Read Full Article: Training a Model for Code Edit Predictions

  • MiniMax M2.1: Enhanced Coding & Reasoning Model


    MiniMax Releases M2.1: An Enhanced M2 Version with Features like Multi-Coding Language Support, API Integration, and Improved Tools for Structured CodingMiniMax has unveiled M2.1, an enhanced version of its M2 model, which offers significant improvements in coding and reasoning capabilities. The M2 model was already recognized for its efficiency and speed, operating at a fraction of the cost of competitors like Claude Sonnet. M2.1 builds upon this by providing better code quality, smarter instruction following, and cleaner reasoning. It excels in multilingual coding performance, achieving high scores on benchmarks like SWE-Multilingual and VIBE-Bench, and offers robust compatibility with various coding tools and frameworks, making it ideal for both coding and broader applications like documentation and writing. The model's standout feature is its ability to separate reasoning from the final response, offering transparency into its decision-making process. This separation aids in debugging and building trust, particularly in complex workflows. M2.1 also demonstrates advanced capabilities in handling structured coding prompts with multiple constraints, showcasing its proficiency in producing production-quality code. The model's interleaved thinking allows it to dynamically plan and adapt within complex workflows, further enhancing its utility for real-world coding and AI-native teams. In comparison to OpenAI's GPT-5.2, MiniMax M2.1 shows superior performance in tasks requiring semantic understanding and instruction adherence. It provides a more comprehensive and contextually aware output, particularly in tasks involving filtering and translation. This highlights M2.1's ability to deliver high-quality, structured outputs across various tasks, reinforcing its position as a versatile and powerful tool for developers and AI teams. This matters because it represents a significant step forward in the development of AI models that are not only efficient and cost-effective but also capable of handling complex, real-world tasks with precision and clarity.

    Read Full Article: MiniMax M2.1: Enhanced Coding & Reasoning Model