autoscaling
-
Autoscaling RAG Components on Kubernetes
Read Full Article: Autoscaling RAG Components on KubernetesRetrieval-augmented generation (RAG) systems enhance the accuracy of AI agents by using a knowledge base to provide context to large language models (LLMs). The NVIDIA RAG Blueprint facilitates RAG deployment in enterprise settings, offering modular components for ingestion, vectorization, retrieval, and generation, along with options for metadata filtering and multimodal embedding. RAG workloads can be unpredictable, requiring autoscaling to manage resource allocation efficiently during peak and off-peak times. By leveraging Kubernetes Horizontal Pod Autoscaling (HPA), organizations can autoscale NVIDIA NIM microservices like Nemotron LLM, Rerank, and Embed based on custom metrics, ensuring performance meets service level agreements (SLAs) even during demand surges. Understanding and implementing autoscaling in RAG systems is crucial for maintaining efficient resource use and optimal service performance.
