TensorFlow 2.15 introduces several key updates, including a simplified installation process for NVIDIA CUDA libraries on Linux, which now allows users to install necessary dependencies directly through pip, provided the NVIDIA driver is already installed. For Windows users, oneDNN CPU performance optimizations are now enabled by default, enhancing TensorFlow's efficiency on x86 CPUs. The release also expands the capabilities of tf.function, offering new types such as tf.types.experimental.TraceType and tf.types.experimental.FunctionType for better input handling and function representation. Additionally, TensorFlow packages are now built with Clang 17 and CUDA 12.2, optimizing performance for NVIDIA Hopper-based GPUs. These updates are crucial for developers seeking improved performance and ease of use in machine learning applications.
Read Full Article: TensorFlow 2.15: Key Updates and Enhancements