gradient checkpointing

  • Efficient Model Training with Mixed Precision


    Training a Model with Limited Memory using Mixed Precision and Gradient CheckpointingTraining large language models is a memory-intensive task, primarily due to the size of the models and the length of the data sequences they process. Techniques like mixed precision and gradient checkpointing can help alleviate memory constraints. Mixed precision involves using lower-precision floating-point numbers, such as float16 or bfloat16, which save memory and can speed up training on compatible hardware. PyTorch's automatic mixed precision (AMP) feature simplifies this process by automatically selecting the appropriate precision for different operations, while a GradScaler manages gradient scaling to prevent issues like vanishing gradients. Gradient checkpointing further reduces memory usage by discarding some intermediate results during the forward pass and recomputing them during the backward pass, trading off computational time for memory savings. These techniques are crucial for training models efficiently in memory-constrained environments, allowing for larger batch sizes and more complex models without requiring additional hardware resources. This matters because optimizing memory usage in model training enables more efficient use of resources, allowing for the development of larger and more powerful models without the need for expensive hardware upgrades.

    Read Full Article: Efficient Model Training with Mixed Precision