local execution
-
Run MiniMax-M2.1 Locally with Claude Code & vLLM
Read Full Article: Run MiniMax-M2.1 Locally with Claude Code & vLLM
Running the MiniMax-M2.1 model locally using Claude Code and vLLM involves setting up a robust hardware environment, including dual NVIDIA RTX Pro 6000 GPUs and an AMD Ryzen 9 7950X3D processor. The process requires installing vLLM nightly on Ubuntu 24.04 and downloading the AWQ-quantized MiniMax-M2.1 model from Hugging Face. Once the server is set up with Anthropic-compatible endpoints, Claude Code can be configured to interact with the local model using a settings.json file. This setup allows for efficient local execution of AI models, reducing reliance on external cloud services and enhancing data privacy.
-
LLM in Browser for Infinite Dropdowns
Read Full Article: LLM in Browser for Infinite Dropdowns
A new site demonstrates the capabilities of running a language model (LLM) locally in the browser, providing an innovative way to generate infinite dropdowns. This approach utilizes minimal code, with the entire functionality being implemented in under 50 lines of HTML, showcasing the efficiency and potential of local LLMs. The project is accessible for exploration and experimentation, with resources available on both a static site and a GitHub repository. This matters because it highlights the potential for more efficient and accessible AI applications directly in web browsers, reducing reliance on server-side processing.
