model visualization

  • Building a Small VIT with Streamlit


    A small VIT from scratch in StreamlitStreamlit is a popular framework for creating data applications with ease, and its capabilities are being explored through a project involving small Vision Transformers (VITs). The project involves performing a grid search on custom-built VITs to identify the most effective configuration for real-time digit classification. By leveraging Streamlit, the project not only facilitates the classification process but also provides a platform to visualize attention maps, which are crucial for understanding how the model focuses on different parts of the input data. The use of VITs in this context is significant as they represent a modern approach to handling image data, often outperforming traditional convolutional neural networks in various tasks. The project demonstrates how VITs can be effectively implemented from scratch and highlights the flexibility of Streamlit in deploying machine learning models. This exploration serves as a practical example for those looking to understand the integration of advanced machine learning techniques with user-friendly application frameworks. Sharing the code and application through platforms like GitHub and Streamlit allows others to replicate and learn from the project, fostering a collaborative learning environment. This is particularly useful for individuals new to Streamlit or those interested in experimenting with VITs, providing them with a tangible example to build upon. The project not only showcases the potential of Streamlit in machine learning applications but also encourages others to explore and innovate within the field. This matters because it highlights the accessibility and power of modern tools in democratizing machine learning development.

    Read Full Article: Building a Small VIT with Streamlit