Python libraries

  • YOLOv8 Tutorial: Classify Agricultural Pests


    Classify Agricultural Pests | Complete YOLOv8 Classification TutorialThis tutorial provides a comprehensive guide for using the YOLOv8 model to classify agricultural pests through image classification. It covers the entire process from setting up the necessary Conda environment and Python libraries, to downloading and preparing the dataset, training the model, and testing it with new images. The tutorial is designed to be practical, offering both video and written explanations to help users understand how to effectively run inference and interpret model outputs. Understanding how to classify agricultural pests using machine learning can significantly enhance pest management strategies in agriculture, leading to more efficient and sustainable farming practices.

    Read Full Article: YOLOv8 Tutorial: Classify Agricultural Pests

  • 10 Must-Know Python Libraries for Data Scientists


    10 Lesser-Known Python Libraries Every Data Scientist Should Be Using in 2026Data scientists often rely on popular Python libraries like NumPy and pandas, but there are many lesser-known libraries that can significantly enhance data science workflows. These libraries are categorized into four key areas: automated exploratory data analysis (EDA) and profiling, large-scale data processing, data quality and validation, and specialized data analysis for domain-specific tasks. For instance, Pandera offers statistical data validation for pandas DataFrames, while Vaex handles large datasets efficiently with a pandas-like API. Other notable libraries include Pyjanitor for clean data workflows, D-Tale for interactive DataFrame visualization, and cuDF for GPU-accelerated operations. Exploring these libraries can help data scientists tackle common challenges more effectively and improve their data processing and analysis capabilities. This matters because utilizing the right tools can drastically enhance productivity and accuracy in data science projects.

    Read Full Article: 10 Must-Know Python Libraries for Data Scientists