temporal consistency
-
Building LLMs: Evaluation & Deployment
Read Full Article: Building LLMs: Evaluation & Deployment
The final installment in the series on building language models from scratch focuses on the crucial phase of evaluation, testing, and deployment. It emphasizes the importance of validating trained models through a practical evaluation framework that includes both quick and comprehensive checks beyond just perplexity. Key tests include historical accuracy, linguistic checks, temporal consistency, and performance sanity checks. Deployment strategies involve using CI-like smoke checks on CPUs to ensure models are reliable and reproducible. This phase is essential because training a model is only half the battle; without thorough evaluation and a repeatable publishing workflow, models risk being unreliable and unusable.
Popular AI Topics
machine learning AI advancements AI models AI tools AI development AI Integration AI technology AI innovation AI applications open source AI efficiency AI ethics AI systems Python AI performance Innovation AI limitations AI reliability Nvidia AI capabilities AI agents AI safety LLMs user experience AI interaction
