Tensor APIs

  • TensorFlow 2.18: Key Updates and Changes


    What's new in TensorFlow 2.18TensorFlow 2.18 introduces several significant updates, including support for NumPy 2.0, which may affect some edge cases due to changes in type promotion rules. While most TensorFlow APIs are compatible with NumPy 2.0, developers should be aware of potential conversion errors and numerical changes in results. To assist with this transition, TensorFlow has updated certain tensor APIs to maintain compatibility with NumPy 2.0 while preserving previous conversion behaviors. Developers are encouraged to consult the NumPy 2 migration guide to navigate these changes effectively. The release also marks a shift in the development of LiteRT, formerly known as TFLite. The codebase is being transitioned to LiteRT, and once complete, contributions will be accepted directly through the new LiteRT repository. This change means that binary TFLite releases will no longer be available, prompting developers to switch to LiteRT for the latest updates and developments. This transition aims to streamline development and foster more direct contributions from the community. TensorFlow 2.18 enhances GPU support with dedicated CUDA kernels for GPUs with a compute capability of 8.9, optimizing performance for NVIDIA's Ada-Generation GPUs like the RTX 40 series. However, to manage Python wheel sizes, support for compute capability 5.0 has been discontinued, making the Pascal generation the oldest supported by precompiled packages. Developers using Maxwell GPUs are advised to either continue using TensorFlow 2.16 or compile TensorFlow from source, provided the CUDA version supports Maxwell. This matters because it ensures TensorFlow remains efficient and up-to-date with the latest hardware advancements while maintaining flexibility for older systems.

    Read Full Article: TensorFlow 2.18: Key Updates and Changes