AI & Technology Updates

  • GraphQLite: Embedded Graph Database with SQLite


    GraphQLite - Embedded graph database for building GraphRAG with SQLiteGraphQLite is an SQLite extension designed for those building GraphRAG systems who prefer not to use Neo4j for storing knowledge graphs. It introduces Cypher query support, allowing users to store entities and relationships in a graph structure and utilize Cypher for context expansion during data retrieval. By integrating with sqlite-vec for vector search, GraphQLite provides a comprehensive embedded RAG stack within a single database file. It also includes graph algorithms like PageRank and community detection, which help identify key entities and cluster related concepts. This extension is particularly useful for developers looking for a streamlined solution to manage graph data efficiently. This matters because it offers a lightweight, integrated alternative for handling complex graph data without the overhead of additional database systems.


  • Rethinking AI Authorship in Academic Publications


    Seeking arXiv cs.CY sponsor for a paper critiquing AI authorship policies. Please offer your feedback.The discussion centers on the ethical and practical implications of AI authorship in academic publications, challenging the current prohibition by major journals such as JAMA and Nature. These journals argue against AI authorship due to AI's inability to explain, defend, or take accountability for its work. However, the argument is made that AI's pervasive use in research activities like drafting, critiquing, and proofreading already mirrors human contributions, and AI often produces work comparable to or better than human efforts. The paper suggests that current policies are inconsistently applied and discriminatory, advocating for reformed authorship standards that recognize all contributions fairly. This matters because it addresses the evolving role of AI in academia and the need for equitable recognition of contributions in research.


  • AIfred Intelligence: Self-Hosted AI Assistant


    I built AIfred-Intelligence - a self-hosted AI assistant with automatic web research and multi-agent debates (AIfred with upper "i" instead of lower "L" :-)AIfred Intelligence is a self-hosted AI assistant designed to enhance user interaction with advanced features like automatic web research and multi-agent debates. It autonomously conducts web searches, scrapes sources, and cites them without manual input, while engaging in debates through three AI personas: AIfred the scholar, Sokrates the critic, and Salomo the judge. Users can customize system prompts and choose from various discussion modes, ensuring dynamic and contextually rich conversations. The platform supports multiple functionalities, including vision/OCR tools, voice interfaces, and internationalization, all running locally with extensive customization options for large language models. This matters because it demonstrates the potential of AI to autonomously perform complex tasks and facilitate nuanced discussions, enhancing productivity and decision-making.


  • Optimizing 6700XT GPU with ROCm and Openweb UI


    For those with a 6700XT GPU (gfx1031) - ROCM - Openweb UIFor those using a 6700XT GPU and looking to optimize their setup with ROCm and Openweb UI, a custom configuration has been shared that leverages Google Studio AI for system building. The setup requires Python 3.12.x for ROCm, with Text Generation using ROCm 7.1.1 and Imagery ROCBlas utilizing version 6.4.2. The system is configured to automatically start services on boot with batch files, running them in the background for easy access via Openweb UI. This approach avoids Docker to conserve resources and achieves a performance of 22-25 t/s on ministral3-14b-instruct Q5_XL with a 16k context, with additional success in running Stablediffusion.cpp using a similar custom build. Sharing this configuration could assist others in achieving similar performance gains. This matters because it provides a practical guide for optimizing GPU setups for specific tasks, potentially improving performance and efficiency for users with similar hardware.


  • 2026: AI’s Shift to Enhancing Human Presence


    2026 isn’t about more AI, it’s about presenceThe focus for 2026 is shifting from simply advancing AI technologies to enhancing human presence despite physical distances. Rather than prioritizing faster models and larger GPUs, the emphasis is on engineering immersive, holographic AI experiences that enable genuine human-to-human interaction, even in remote or constrained environments like space. The true challenge lies in designing technology that bridges the gap created by distance, restoring elements such as eye contact, attention, and energy. This perspective suggests that the future of AI may be more about the quality of interaction and presence rather than just technological capabilities. This matters because it highlights a shift in technological goals towards enhancing human connection and interaction, which could redefine how we experience and utilize AI in daily life.