algorithm design

  • AI Optimizes Cloud VM Allocation


    Solving virtual machine puzzles: How AI is optimizing cloud computingCloud data centers face the complex challenge of efficiently allocating virtual machines (VMs) with varying lifespans onto physical servers, akin to a dynamic game of Tetris. Poor allocation can lead to wasted resources and reduced capacity for essential tasks. AI offers a solution by predicting VM lifetimes, but traditional methods relying on single predictions can lead to inefficiencies if mispredictions occur. The introduction of algorithms like NILAS, LAVA, and LARS addresses this by using continuous reprediction, allowing for adaptive and efficient VM allocation that improves resource utilization. This matters because optimizing VM allocation is crucial for economic and environmental efficiency in large-scale data centers.

    Read Full Article: AI Optimizes Cloud VM Allocation

  • Provably Private AI Insights


    Toward provably private insights into AI useEfforts are underway to develop systems that ensure privacy while using AI, with significant contributions from various teams at Google. The initiative focuses on creating algorithms and infrastructure that provide provably private insights into AI usage, ensuring that user data remains secure. This collaborative project involves a wide array of experts and partners, highlighting the importance of privacy in advancing AI technologies. Ensuring privacy in AI is crucial as it builds trust and promotes the responsible use of technology in society.

    Read Full Article: Provably Private AI Insights