coding benchmarks
-
Efficient Low-Bit Quantization for Large Models
Read Full Article: Efficient Low-Bit Quantization for Large Models
Recent advancements in model optimization techniques, such as stable and large Mixture of Experts (MoE) models, along with low-bit quantization methods like 2 and 3-bit UD_I and exl3 quants, have made it feasible to run large models on limited VRAM without significantly compromising performance. For instance, models like MiniMax M2.1 and REAP-50.Q5_K_M can operate within a 96 GB VRAM limit while maintaining competitive performance in coding benchmarks. These developments suggest that using low-bit quantization for large models could be more efficient than employing smaller models with higher bit quantization, potentially offering better performance in agentic coding tasks. This matters because it could lead to more efficient use of computational resources, enabling the deployment of powerful AI models on less expensive hardware.
-
MiniMax M2.1: Open Source SOTA for Dev & Agents
Read Full Article: MiniMax M2.1: Open Source SOTA for Dev & Agents
MiniMax M2.1, now open source and available on Hugging Face, is setting new standards in real-world development and agent applications by achieving state-of-the-art (SOTA) performance on coding benchmarks such as SWE, VIBE, and Multi-SWE. Demonstrating superior capabilities, it surpasses notable models like Gemini 3 Pro and Claude Sonnet 4.5. With a configuration of 10 billion active parameters and a total of 230 billion parameters in a Mixture of Experts (MoE) architecture, MiniMax M2.1 offers significant advancements in computational efficiency and effectiveness for developers and AI agents. This matters because it provides the AI community with a powerful, open-source tool that enhances coding efficiency and innovation in AI applications.
