TinyML is revolutionizing machine learning by enabling models to run on low-power devices like microcontrollers and edge devices. However, the field has been hampered by a lack of suitable datasets that cater to its unique constraints. Wake Vision addresses this gap by providing a large, high-quality dataset specifically designed for person detection in TinyML applications. This dataset is nearly 100 times larger than its predecessor, Visual Wake Words (VWW), and offers two distinct training sets: one prioritizing size and the other prioritizing label quality. This dual approach allows researchers to explore the balance between dataset size and quality, which is crucial for developing efficient TinyML models. Data quality is particularly important for TinyML models, which are often under-parameterized compared to traditional models. While larger datasets can be beneficial, they must be paired with high-quality labels to maximize performance. Wake Vision's rigorous filtering and labeling process ensures that the dataset is not only large but also of high quality. This is vital for training models that can accurately detect people across various real-world conditions, such as different lighting environments, distances, and depictions. The dataset also includes fine-grained benchmarks that allow researchers to evaluate model performance in specific scenarios, helping to identify biases and limitations early in the design phase. Wake Vision has demonstrated significant performance gains, with up to a 6.6% increase in accuracy over the VWW dataset and a reduction in error rates from 7.8% to 2.2% when using manual label validation. The dataset's versatility is further enhanced by its availability through popular dataset services and its permissive CC-BY 4.0 license, allowing researchers and practitioners to freely use and adapt it for their projects. A dedicated leaderboard on the Wake Vision website offers a platform for tracking and comparing model performance, encouraging innovation and collaboration in the TinyML community. This matters because it accelerates the development of more reliable and efficient person detection models for ultra-low-power devices, expanding the potential applications of TinyML technology.
Read Full Article: Wake Vision: A Dataset for TinyML Computer Vision