FP16

  • Llama.cpp vs Ollama: Code Generation Throughput


    llama.cpp vs Ollama: ~70% higher code generation throughput on Qwen-3 Coder 32B (FP16)A notable performance discrepancy has been observed between llama.cpp and Ollama in terms of code generation throughput when running the Qwen-3 Coder 32B model locally. The analysis reveals that llama.cpp achieves approximately 70% higher throughput compared to Ollama, despite both using the same model weights and hardware. Potential reasons for this difference include variations in CUDA kernels, attention implementations, context or batching defaults, scheduler or multi-GPU utilization, and overhead from Ollama's runtime or API layer. Understanding these differences is crucial for optimizing performance in machine learning applications. This matters because optimizing code generation throughput can significantly impact computational efficiency and resource utilization in AI model deployment.

    Read Full Article: Llama.cpp vs Ollama: Code Generation Throughput

  • Boosting AI with Half-Precision Inference


    Half-precision Inference Doubles On-Device Inference PerformanceHalf-precision inference in TensorFlow Lite's XNNPack backend has doubled the performance of on-device machine learning models by utilizing FP16 floating-point numbers on ARM CPUs. This advancement allows AI features to be deployed on older and lower-tier devices by reducing storage and memory overhead compared to traditional FP32 computations. The FP16 inference, now widely supported across mobile devices and tested in Google products, delivers significant speedups for various neural network architectures. Users can leverage this improvement by providing FP32 models with FP16 weights and metadata, enabling seamless deployment across devices with and without native FP16 support. This matters because it enhances the efficiency and accessibility of AI applications on a broader range of devices, making advanced features more widely available.

    Read Full Article: Boosting AI with Half-Precision Inference