fraud detection
-
Real-time Fraud Detection with Continuous Learning
Read Full Article: Real-time Fraud Detection with Continuous Learning
A prototype for a real-time fraud detection system has been developed, utilizing continuous learning to adapt quickly to changing fraud tactics. Unlike traditional systems that can take days to update, this system uses Apache Kafka for streaming events and Hoeffding Trees for continuous learning, enabling it to adapt in approximately two minutes. The system demonstrates real-time training, learning from each event, similar to how companies like Netflix and Uber operate. This approach showcases the potential for more responsive and efficient fraud detection systems, which is crucial for minimizing financial losses and improving security.
-
Federated Fraud Detection with PyTorch
Read Full Article: Federated Fraud Detection with PyTorch
A privacy-preserving fraud detection system is simulated using Federated Learning, allowing ten independent banks to train local fraud-detection models on imbalanced transaction data. The system utilizes a FedAvg aggregation loop to improve a global model without sharing raw transaction data between clients. OpenAI is integrated to provide post-training analysis and risk-oriented reporting, transforming federated learning outputs into actionable insights. This approach emphasizes privacy, simplicity, and real-world applicability, offering a practical blueprint for experimenting with federated fraud models. Understanding and implementing such systems is crucial for enhancing fraud detection while maintaining data privacy.
