healthcare AI
-
Hybrid LSTM-KAN for Respiratory Sound Classification
Read Full Article: Hybrid LSTM-KAN for Respiratory Sound Classification
The investigation explores the use of hybrid Long Short-Term Memory (LSTM) and Knowledge Augmented Network (KAN) architectures for classifying respiratory sounds in imbalanced datasets. This approach aims to improve the accuracy and reliability of respiratory sound classification, which is crucial for medical diagnostics. By combining LSTM's ability to handle sequential data with KAN's knowledge integration, the study seeks to address the challenges posed by imbalanced data, potentially leading to better healthcare outcomes. This matters because improving diagnostic tools can lead to more accurate and timely medical interventions.
-
Physician’s 48-Hour NLP Journey in Healthcare AI
Read Full Article: Physician’s 48-Hour NLP Journey in Healthcare AI
A psychiatrist with an engineering background embarked on a journey to learn natural language processing (NLP) and develop a clinical signal extraction tool for C-SSRS/PHQ-9 assessments within 48 hours. Despite initial struggles with understanding machine learning concepts and tools, the physician successfully created a working prototype using rule-based methods and OpenAI API integration. The project highlighted the challenges of applying AI in healthcare, particularly due to the subjective and context-dependent nature of clinical tools like PHQ-9 and C-SSRS. This experience underscores the need for a bridge between clinical expertise and technical development to enhance healthcare AI applications. Understanding and addressing these challenges is crucial for advancing AI's role in healthcare.
