intelligence
-
Rethinking RAG: Dynamic Agent Learning
Read Full Article: Rethinking RAG: Dynamic Agent Learning
Rethinking how agents operate involves shifting from treating retrieval as mere content to viewing it as a structural component of cognition. Current systems often fail because they blend knowledge, reasoning, behavior, and safety into a single flat space, leading to brittle agents that overfit and break easily. By distinguishing between different types of information—such as facts, reasoning approaches, and control measures—agents can evolve to be more adaptable and reliable. This approach allows agents to become simple interfaces that orchestrate capabilities at runtime, enhancing their ability to operate intelligently and flexibly in dynamic environments. This matters because it can lead to more robust and adaptable AI systems that better mimic human-like reasoning and decision-making.
-
Emergence of Intelligence via Physical Structures
Read Full Article: Emergence of Intelligence via Physical Structures
The hypothesis suggests that the emergence of intelligence is inherently possible within our physical structure and can be designed by leveraging the structural methods of Transformers, particularly their predictive capabilities. The framework posits that intelligence arises from the ability to predict and interact with the environment, using a combination of feature compression and action interference. This involves creating a continuous feature space where agents can tool-ize features, leading to the development of self-boundaries and personalized desires. The ultimate goal is to enable agents to interact with spacetime effectively, forming an internal model that aligns with the universe's essence. This matters because it provides a theoretical foundation for developing artificial general intelligence (AGI) that can adapt to infinite tasks and environments, potentially revolutionizing how machines learn and interact with the world.
