local LLMs
-
Quill: Open Source Writing Assistant with Prompt Control
Read Full Article: Quill: Open Source Writing Assistant with Prompt Control
Quill is a streamlined open-source background writing assistant designed for users who want more control over prompt engineering. Inspired by Writing Tools, Quill removes certain features like screen capture and a separate chat window to focus on selected text processing, making it compatible with local language models. It allows users to configure parameters and inference settings, and supports any OpenAI-compatible API, such as Ollama and llama.cpp. The user interface is kept simple and readable, though some features from Writing Tools are omitted, which might be missed by some users. Currently, Quill is available only for Windows, and feedback is encouraged to improve its functionality. This matters as it provides writers with a customizable tool that enhances their writing process by integrating local language models and offering greater control over how prompts are managed.
-
Speakr v0.8.0: New Diarization & REST API
Read Full Article: Speakr v0.8.0: New Diarization & REST API
Speakr v0.8.0 introduces new features for its self-hosted transcription app, enhancing user experience with additional diarization options and a REST API. Users can now perform speaker diarization without a GPU by setting the TRANSCRIPTION_MODEL to gpt-4o-transcribe-diarize, utilizing their OpenAI key for diarized transcripts. The REST API v1 facilitates automation, compatible with tools like n8n and Zapier, and includes interactive Swagger documentation and personal access tokens for authentication. The update also improves UI responsiveness for lengthy transcripts, offers better audio playback, and maintains compatibility with local LLMs for text generation, while simplifying configuration through a connector architecture that auto-detects providers based on user settings. This matters because it makes advanced transcription and automation accessible to more users by reducing hardware requirements and simplifying setup, enhancing productivity and collaboration.
-
VSCode for Local LLMs
Read Full Article: VSCode for Local LLMs
A modified version of Visual Studio Code has been developed for Local LLMs, featuring LMStudio support and a unique context management system. This version is particularly appealing to AI enthusiasts interested in experimenting with ggufs from LMStudio. By integrating these features, it provides a tailored environment for testing and developing local language models, enhancing the capabilities of AI developers. This matters because it offers a specialized tool for advancing local AI model experimentation and development.
-
Orchestrating LLMs Locally with n8n and SSH
Read Full Article: Orchestrating LLMs Locally with n8n and SSH
Using n8n to orchestrate DeepSeek/Llama3 agents via SSH offers a cost-effective alternative to OpenAI nodes for tasks requiring heavy context. By utilizing the n8n SSH Node to connect to a local Ollama instance, it avoids the REST API and leverages an interactive CLI for stateful sessions using a Session ID. This setup allows for persistent context and error handling within the same SSH session, enabling efficient orchestration of local LLMs without complex frameworks. This matters because it provides a more affordable and streamlined approach to managing local machine learning models for repetitive tasks.
-
Lynkr – Multi-Provider LLM Proxy
Read Full Article: Lynkr – Multi-Provider LLM Proxy
The landscape of local Large Language Models (LLMs) is rapidly advancing, with llama.cpp emerging as a preferred choice among redditors for its superior performance, transparency, and features compared to Ollama. While several local LLMs have proven effective for various tasks, the latest Llama models have received mixed reviews. The rising costs of hardware, especially VRAM and DRAM, pose challenges for running local LLMs. For those seeking further insights and community discussions, several subreddits offer valuable resources and support. Understanding these developments is crucial as they impact the accessibility and efficiency of AI technologies in local settings.
-
Running Local LLMs on RTX 3090: Insights and Challenges
Read Full Article: Running Local LLMs on RTX 3090: Insights and Challenges
The landscape of local Large Language Models (LLMs) is rapidly advancing, with llama.cpp emerging as a preferred choice among users for its superior performance and transparency compared to alternatives like Ollama. While Llama models have been pivotal, recent versions have garnered mixed feedback, highlighting the evolving nature of these technologies. The increasing hardware costs, particularly for VRAM and DRAM, are a significant consideration for those running local LLMs. For those seeking further insights and community support, various subreddits offer a wealth of information and discussion. Understanding these developments is crucial as they impact the accessibility and efficiency of AI technology for local applications.
-
Project ARIS: AI in Astronomy
Read Full Article: Project ARIS: AI in AstronomyProject ARIS demonstrates a practical application of local Large Language Models (LLMs) by integrating Mistral Nemo as a reasoning layer for analyzing astronomical data. Utilizing a Lenovo Yoga 7 with Ryzen AI 7 and 24GB RAM, the system runs on Nobara Linux and incorporates a Tauri/Rust backend to interface with the Ollama API. Key functionalities include contextual memory for session recaps, intent parsing to convert natural language into structured MAST API queries, and anomaly scoring to identify unusual spectral data. This showcases the potential of a 12B model when equipped with a tailored toolset and environment. Why this matters: It highlights the capabilities of LLMs in specialized fields like astronomy, offering insights into how AI can enhance data analysis and anomaly detection.
-
Local LLMs: Trends and Hardware Challenges
Read Full Article: Local LLMs: Trends and Hardware Challenges
The landscape of local Large Language Models (LLMs) is rapidly advancing, with llama.cpp emerging as a favored tool among enthusiasts due to its performance and transparency. Despite the influence of Llama models, recent versions have garnered mixed feedback. The rising costs of hardware, particularly VRAM and DRAM, are a growing concern for those running local LLMs. For those seeking additional insights and community support, various subreddits offer a wealth of information and discussion. Understanding these trends and tools is crucial as they impact the accessibility and development of AI technologies.
