supervised fine-tuning

  • Falcon-H1R-7B: Compact Model Excels in Reasoning


    TII Abu-Dhabi Released Falcon H1R-7B: A New Reasoning Model Outperforming Others in Math and Coding with only 7B Params with 256k Context WindowThe Technology Innovation Institute in Abu Dhabi has introduced Falcon-H1R-7B, a compact 7 billion parameter model that excels in math, coding, and general reasoning tasks, outperforming larger models with up to 47 billion parameters. This model employs a hybrid architecture combining Transformer layers with Mamba2 components, allowing for efficient long-sequence processing with a context window of up to 256,000 tokens. It undergoes a two-stage training process involving supervised fine-tuning and reinforcement learning, which enhances its reasoning capabilities. Falcon-H1R-7B demonstrates impressive performance across various benchmarks, achieving high scores in math and coding tasks, and offers significant improvements in throughput and accuracy through its innovative design. This matters because it showcases how smaller, well-designed models can rival larger ones in performance, offering more efficient solutions for complex reasoning tasks.

    Read Full Article: Falcon-H1R-7B: Compact Model Excels in Reasoning