A new verification engine called FailSafe has been developed to address the issues of "Snowball Hallucinations" and Sycophancy in Retrieval-Augmented Generation (RAG) systems. FailSafe employs a multi-layered approach, starting with a statistical heuristic firewall to filter out irrelevant inputs, followed by a decomposition layer using FastCoref and MiniLM to break down complex text into simpler claims. The core of the system is a debate among three agents: The Logician, The Skeptic, and The Researcher, each with distinct roles to ensure rigorous fact-checking and prevent premature consensus. This matters because it aims to enhance the reliability and accuracy of AI-generated information by preventing the propagation of misinformation.
Read Full Article: FailSafe: Multi-Agent Engine to Stop AI Hallucinations