thermodynamics
-
Emergence of Intelligence via Physical Structures
Read Full Article: Emergence of Intelligence via Physical Structures
The hypothesis suggests that the emergence of intelligence is inherently possible within our physical structure and can be designed by leveraging the structural methods of Transformers, particularly their predictive capabilities. The framework posits that intelligence arises from the ability to predict and interact with the environment, using a combination of feature compression and action interference. This involves creating a continuous feature space where agents can tool-ize features, leading to the development of self-boundaries and personalized desires. The ultimate goal is to enable agents to interact with spacetime effectively, forming an internal model that aligns with the universe's essence. This matters because it provides a theoretical foundation for developing artificial general intelligence (AGI) that can adapt to infinite tasks and environments, potentially revolutionizing how machines learn and interact with the world.
-
Thermodynamics and AI: Limits of Machine Intelligence
Read Full Article: Thermodynamics and AI: Limits of Machine Intelligence
Using thermodynamic principles, the essay explores why artificial intelligence may not surpass human intelligence. Information is likened to energy, flowing from a source to a sink, with entropy measuring its degree of order. Humans, as recipients of chaotic information from the universe, structure it over millennia with minimal power requirements. In contrast, AI receives pre-structured information from humans and restructures it rapidly, demanding significant energy but not generating new information. This process is constrained by combinatorial complexity, leading to potential errors or "hallucinations" due to non-zero entropy, suggesting AI's limitations in achieving human-like intelligence. Understanding these limitations is crucial for realistic expectations of AI's capabilities.
