VLMs

  • Advancements in Llama AI Technology 2025-2026


    39C3 - 51 Ways to Spell the Image Giraffe: The Hidden Politics of Token Languages in Generative AIIn 2025 and early 2026, significant advancements in Llama AI technology have been marked by the maturation of open-source Vision-Language Models (VLMs), which are anticipated to be widely productized by 2026. Mixture of Experts (MoE) models have gained popularity, with users now operating models with 100-120 billion parameters, a significant increase from the previous year's 30 billion. Z.ai has emerged as a key player with models optimized for inference, while OpenAI's GPT-OSS has been lauded for its tool-calling capabilities. Additionally, Alibaba has expanded its offerings with a variety of models, and coding agents have demonstrated the undeniable potential of generative AI. This matters because these advancements reflect the rapid evolution and diversification of AI technologies, influencing a wide range of applications and industries.

    Read Full Article: Advancements in Llama AI Technology 2025-2026

  • Pipeline for Extracting Executive Compensation Data


    I built a pipeline to extract executive compensation data from SEC filings using MinerU + VLMsA pipeline has been developed to extract executive compensation data from SEC filings, specifically targeting Summary Compensation Tables within DEF-14A proxy statements. Utilizing MinerU for parsing PDFs and extracting table images, along with Qwen3-VL-32B for classifying and structuring the data, the project addresses challenges such as tables spanning multiple pages and format variations between pre- and post-2006 filings. Although still in development with some bugs, the pipeline aims to compile a comprehensive dataset of executive compensation from 2005 to the present for all US public companies. This initiative is crucial for improving transparency and accessibility of executive compensation data, potentially aiding research and analysis in corporate governance and financial studies.

    Read Full Article: Pipeline for Extracting Executive Compensation Data