VS Code

  • MCP Server for Karpathy’s LLM Council


    Built an MCP Server for Andrej Karpathy's LLM CouncilBy integrating Model Context Protocol (MCP) support into Andrej Karpathy's llm-council project, multi-LLM deliberation can now be accessed directly through platforms like Claude Desktop and VS Code. This enhancement allows users to bypass the web UI and engage in a streamlined process where queries receive comprehensive deliberation through individual responses, peer rankings, and synthesis within approximately 60 seconds. This development facilitates more efficient and accessible use of large language models for complex queries, enhancing the utility and reach of AI-driven discussions. Why this matters: It democratizes access to advanced AI deliberation, making sophisticated analysis tools available to a broader audience.

    Read Full Article: MCP Server for Karpathy’s LLM Council

  • Free GPU in VS Code


    Free GPU in VS CodeGoogle Colab's integration with VS Code now allows users to access the free T4 GPU directly from their local system. This extension facilitates the seamless use of powerful GPU resources within the familiar VS Code environment, enhancing the development and testing of machine learning models. By bridging these platforms, developers can leverage advanced computational capabilities without leaving their preferred coding interface. This matters because it democratizes access to high-performance computing, making it more accessible for developers and researchers working on resource-intensive projects.

    Read Full Article: Free GPU in VS Code

  • Wafer: Streamlining GPU Kernel Optimization in VSCode


    Wafer: VSCode extension to help you develop, profile, and optimize GPU kernelsWafer is a new VS Code extension designed to streamline GPU performance engineering by integrating several tools directly into the development environment. It aims to simplify the process of developing, profiling, and optimizing GPU kernels, which are crucial for improving training and inference speeds in deep learning applications. Traditionally, this workflow involves using multiple fragmented tools and tabs, but Wafer consolidates these functionalities, allowing developers to work more efficiently within a single interface. The extension offers several key features to enhance the development experience. It integrates Nsight Compute directly into the editor, enabling users to run performance analysis and view results alongside their code. Additionally, Wafer includes a CUDA compiler explorer that allows developers to inspect PTX and SASS code mapped back to their source, facilitating quicker iteration on kernel changes. Furthermore, a GPU documentation search feature is embedded within the editor, providing detailed optimization guidance and context to assist developers in making informed decisions. Wafer is particularly beneficial for those involved in training and inference performance work, as it consolidates essential tools and resources into the familiar environment of VS Code. By reducing the need to switch between different applications and tabs, Wafer enhances productivity and allows developers to focus on optimizing their GPU kernels more effectively. This matters because improving GPU performance can significantly impact the efficiency and speed of deep learning models, leading to faster and more cost-effective AI solutions.

    Read Full Article: Wafer: Streamlining GPU Kernel Optimization in VSCode