AI models

  • SIID: Scale Invariant Image Diffusion Model


    [P] SIID: A scale invariant pixel-space diffusion model; trained on 64x64 MNIST, generates readable 1024x1024 digits for arbitrary ratios with minimal deformities (25M parameters)The Scale Invariant Image Diffuser (SIID) is a new diffusion model architecture designed to overcome limitations in existing models like UNet and DiT, which struggle with changes in pixel density and resolution. SIID achieves this by using a dual relative positional embedding system that allows it to maintain image composition across varying resolutions and aspect ratios, while focusing on refining rather than adding information when more pixels are introduced. Trained on 64×64 MNIST images, SIID can generate readable 1024×1024 images with minimal deformities, demonstrating its ability to scale effectively without relying on data augmentation. This matters because it introduces a more flexible and efficient approach to image generation, potentially enhancing applications in fields requiring high-resolution image synthesis.

    Read Full Article: SIID: Scale Invariant Image Diffusion Model

  • Differential Privacy in Synthetic Photo Albums


    A picture's worth a thousand (private) words: Hierarchical generation of coherent synthetic photo albumsDifferential privacy (DP) offers a robust method to protect individual data in datasets, ensuring privacy even during analysis. Traditional approaches to implementing DP can be complex and error-prone, but generative AI models like Gemini provide a more streamlined solution by creating a private synthetic version of the dataset. This synthetic data retains the general patterns of the original without exposing individual details, allowing for safe application of standard analytical techniques. A new method has been developed to generate synthetic photo albums, addressing the challenge of maintaining thematic coherence and character consistency across images, which is crucial for modeling complex, real-world systems. This approach effectively translates complex image data to text and back, preserving essential semantic information for analysis. This matters because it simplifies the process of ensuring data privacy while enabling the use of complex datasets in AI and machine learning applications.

    Read Full Article: Differential Privacy in Synthetic Photo Albums

  • Edge AI with NVIDIA Jetson for Robotics


    Getting Started with Edge AI on NVIDIA Jetson: LLMs, VLMs, and Foundation Models for RoboticsEdge AI is becoming increasingly important for devices like robots and smart cameras that require real-time processing without relying on cloud services. NVIDIA's Jetson platform offers compact, GPU-accelerated modules designed for edge AI, allowing developers to run advanced AI models locally. This setup ensures data privacy and reduces network latency, making it ideal for applications ranging from personal AI assistants to autonomous robots. The Jetson series, including the Orin Nano, AGX Orin, and AGX Thor, supports varying model sizes and complexities, enabling developers to choose the right fit for their needs. This matters because it empowers developers to create intelligent, responsive devices that operate independently and efficiently in real-world environments.

    Read Full Article: Edge AI with NVIDIA Jetson for Robotics

  • Google Earth AI: Geospatial Insights with AI Models


    Google Earth AI: Unlocking geospatial insights with foundation models and cross-modal reasoningGoogle has advanced its AI capabilities with the introduction of Google Earth AI, which combines powerful foundation models with a geospatial reasoning agent to address complex, real-world questions at a planetary scale. This technology enhances the accuracy of Google Maps and provides timely alerts on weather and natural disasters by analyzing satellite imagery and other data sources. The geospatial reasoning agent breaks down complex queries into manageable steps, utilizing the latest Gemini models to integrate insights across different domains. New innovations, including imagery and population models, demonstrate state-of-the-art performance in solving intricate geospatial queries, offering potential applications for developers and enterprises. This matters because it enhances our ability to understand and respond to environmental challenges with precision and speed.

    Read Full Article: Google Earth AI: Geospatial Insights with AI Models

  • Llama.cpp: Native mxfp4 Support Boosts Speed


    llama.cpp, experimental native mxfp4 support for blackwell (25% preprocessing speedup!)The recent update to llama.cpp introduces experimental native mxfp4 support for Blackwell, resulting in a 25% preprocessing speedup compared to the previous version. While this update is currently 10% slower than the master version, it shows significant promise, especially for gpt-oss models. To utilize this feature, compiling with the flag -DCMAKE_CUDA_ARCHITECTURES="120f" is necessary. Although there are some concerns about potential correctness issues due to the quantization of activation to mxfp4 instead of q8, initial tests indicate no noticeable quality degradation in models like gpt-oss-120b. This matters because it enhances processing efficiency, potentially leading to faster and more efficient AI model training and deployment.

    Read Full Article: Llama.cpp: Native mxfp4 Support Boosts Speed

  • MiniMaxAI/MiniMax-M2.1: Strongest Model Per Param


    MiniMaxAI/MiniMax-M2.1 seems to be the strongest model per paramMiniMaxAI/MiniMax-M2.1 demonstrates impressive performance on the Artificial Analysis benchmarks, rivaling models like Kimi K2 Thinking, Deepseek 3.2, and GLM 4.7. Remarkably, MiniMax-M2.1 achieves this with only 229 billion parameters, which is significantly fewer than its competitors; it has about half the parameters of GLM 4.7, a third of Deepseek 3.2, and a fifth of Kimi K2 Thinking. This efficiency suggests that MiniMaxAI/MiniMax-M2.1 offers the best value among current models, combining strong performance with a smaller parameter size. This matters because it highlights advancements in AI efficiency, making powerful models more accessible and cost-effective.

    Read Full Article: MiniMaxAI/MiniMax-M2.1: Strongest Model Per Param

  • AI-Driven Fetal Ultrasound with TensorFlow Lite


    On-device fetal ultrasound assessment with TensorFlow LiteGoogle Research is leveraging TensorFlow Lite to develop AI models that enhance access to maternal healthcare, particularly in under-resourced regions. By using a "blind sweep" protocol, these models enable non-experts to perform ultrasound scans to predict gestational age and fetal presentation, matching the performance of trained sonographers. The models are optimized for mobile devices, allowing them to function efficiently without internet connectivity, thus expanding their usability in remote areas. This approach aims to lower barriers to prenatal care, potentially reducing maternal and neonatal mortality rates by providing timely and accurate health assessments. This matters because it can significantly improve maternal and neonatal health outcomes in underserved areas by making advanced medical diagnostics more accessible.

    Read Full Article: AI-Driven Fetal Ultrasound with TensorFlow Lite

  • Inside NVIDIA Nemotron 3: Efficient Agentic AI


    Inside NVIDIA Nemotron 3: Techniques, Tools, and Data That Make It Efficient and AccurateNVIDIA's Nemotron 3 introduces a new era of agentic AI systems with its hybrid Mamba-Transformer mixture-of-experts (MoE) architecture, designed for fast throughput and accurate reasoning across large contexts. The model supports a 1M-token context window, enabling sustained reasoning for complex, multi-agent applications, and is trained using reinforcement learning across various environments to align with real-world agentic tasks. Nemotron 3's openness allows developers to customize and extend models, with available datasets and tools supporting transparency and reproducibility. The Nemotron 3 Nano model is available now, with Super and Ultra models to follow, offering enhanced reasoning depth and efficiency. This matters because it represents a significant advancement in AI technology, enabling more efficient and accurate multi-agent systems crucial for complex problem-solving and decision-making tasks.

    Read Full Article: Inside NVIDIA Nemotron 3: Efficient Agentic AI

  • JAX-Privacy: Scalable Differential Privacy in ML


    Differentially private machine learning at scale with JAX-PrivacyJAX-Privacy is an advanced toolkit built on the JAX numerical computing library, designed to facilitate differentially private machine learning at scale. JAX, known for its high-performance capabilities like automatic differentiation and seamless scaling, serves as a foundation for complex AI model development. JAX-Privacy enables researchers and developers to efficiently implement differentially private algorithms, ensuring privacy while training deep learning models on large datasets. The release of JAX-Privacy 1.0 introduces enhanced modularity and integrates the latest research advances, making it easier to build scalable, privacy-preserving training pipelines. This matters because it supports the development of AI models that maintain individual privacy without compromising on data quality or model accuracy.

    Read Full Article: JAX-Privacy: Scalable Differential Privacy in ML

  • Local AI Image Upscaler for Android


    [P] I built a fully local AI Image Upscaler for Android because I didn't want to rely on cloud servers.RendrFlow is an Android app developed to upscale low-resolution images using AI models directly on the device, eliminating the need for cloud servers and ensuring user privacy. The app offers upscaling options up to 16x resolution and includes features like hardware control for CPU and GPU usage, batch processing, and additional tools such as an AI background remover and magic eraser. The developer seeks user feedback on performance across different devices, particularly regarding the app's "Ultra" models and the thermal management of various phones in GPU Burst mode. This matters because it provides a privacy-focused solution for image enhancement without relying on external servers.

    Read Full Article: Local AI Image Upscaler for Android