instruction following

  • AI21 Launches Jamba2 Models for Enterprises


    AI21 releases Jamba2 3B and Jamba2 Mini, built for grounding and instruction followingAI21 has launched Jamba2 3B and Jamba2 Mini, designed to offer enterprises cost-effective models for reliable instruction following and grounded outputs. These models excel in processing long documents without losing context, making them ideal for precise question answering over internal policies and technical manuals. With a hybrid SSM-Transformer architecture and KV cache innovations, they outperform competitors like Ministral3 and Qwen3 in various benchmarks, showcasing superior throughput at extended context lengths. Available through AI21's SaaS and Hugging Face, these models promise enhanced integration into production agent stacks. This matters because it provides businesses with more efficient AI tools for handling complex documentation and internal queries.

    Read Full Article: AI21 Launches Jamba2 Models for Enterprises

  • Liquid AI’s LFM2.5: Compact On-Device Models


    Liquid AI released LFM2.5 1.2B InstructLiquid AI has introduced LFM2.5, a new family of compact on-device foundation models designed to enhance the performance of agentic applications. These models offer improved quality, reduced latency, and support for a wider range of modalities, all within the ~1 billion parameter class. LFM2.5 builds upon the LFM2 architecture with pretraining scaled from 10 trillion to 28 trillion tokens and expanded reinforcement learning post-training, enabling better instruction following. This advancement is crucial as it allows for more efficient and versatile AI applications directly on devices, enhancing user experience and functionality.

    Read Full Article: Liquid AI’s LFM2.5: Compact On-Device Models

  • Tencent HY-Motion 1.0: Text-to-Motion Model


    Tencent HY-Motion 1.0 - a billion-parameter text-to-motion modelTencent HY-Motion 1.0 is an open-source, billion-parameter model that converts text into 3D character animations using the Diffusion Transformer (DiT) architecture and flow matching. This model enhances the capabilities of developers and creators by providing high-fidelity, fluid, and diverse animations that can be easily integrated into existing 3D animation workflows. It features a full-stage training strategy, including pre-training, supervised fine-tuning, and reinforcement learning, to ensure physical plausibility and semantic accuracy across over 200 motion categories. This advancement sets a new standard for instruction-following capability and motion quality in the industry. This matters because it significantly enhances the ability to create complex and realistic 3D animations from natural language, broadening the possibilities for content creation and innovation in digital media.

    Read Full Article: Tencent HY-Motion 1.0: Text-to-Motion Model

  • Liquid AI’s LFM2-2.6B-Exp: Compact AI Model


    Liquid AI’s LFM2-2.6B-Exp Uses Pure Reinforcement Learning RL And Dynamic Hybrid Reasoning To Tighten Small Model BehaviorLiquid AI's LFM2-2.6B-Exp is an experimental checkpoint of the LFM2-2.6B language model, enhanced with pure reinforcement learning to improve instruction following, knowledge tasks, and math capabilities. This model maintains the same architecture as its predecessor, which features a hybrid design of convolution and attention layers, optimized for efficient deployment on edge devices. Despite its compact size, LFM2-2.6B-Exp outperforms larger models on benchmarks like IFBench, demonstrating its strong performance per parameter. Released under an open license, it is well-suited for applications requiring a compact yet capable model, such as on-device assistants and structured data extraction. This matters as it shows how smaller models can achieve high efficiency and performance, making advanced AI more accessible for edge devices.

    Read Full Article: Liquid AI’s LFM2-2.6B-Exp: Compact AI Model