machine learning

  • PonderTTT: Adaptive Compute for LLMs


    My first ML paper - PonderTTT: Adaptive compute for LLMsPonderTTT introduces a novel approach to adaptive computing for large language models (LLMs) by determining when to allocate more computational resources to complex inputs using Test-Time Training. This method allows the model to achieve 82-89% of optimal performance without requiring additional training, using a straightforward threshold and Exponential Moving Average (EMA). The project was developed by a self-taught high school student from Korea, showcasing the potential for independent research in machine learning. This matters because it highlights an efficient way to enhance LLM performance while minimizing computational costs, making advanced AI more accessible and sustainable.

    Read Full Article: PonderTTT: Adaptive Compute for LLMs

  • Real-time Fraud Detection with Continuous Learning


    Real-time fraud detection with continuous learning (Kafka + Hoeffding Trees)A prototype for a real-time fraud detection system has been developed, utilizing continuous learning to adapt quickly to changing fraud tactics. Unlike traditional systems that can take days to update, this system uses Apache Kafka for streaming events and Hoeffding Trees for continuous learning, enabling it to adapt in approximately two minutes. The system demonstrates real-time training, learning from each event, similar to how companies like Netflix and Uber operate. This approach showcases the potential for more responsive and efficient fraud detection systems, which is crucial for minimizing financial losses and improving security.

    Read Full Article: Real-time Fraud Detection with Continuous Learning

  • Gradio: Simplifying ML Web Interfaces


    The KDnuggets Gradio Crash CourseGradio is a Python framework designed to simplify the creation of interactive web interfaces for machine learning models. It allows users to quickly build applications that accept inputs like text, images, and audio, and display outputs in a user-friendly manner without requiring frontend development skills. Gradio supports a variety of input and output components and can handle multiple inputs and outputs, making it versatile for real-world applications. Additionally, Gradio facilitates easy deployment and sharing of applications, either locally or publicly, and supports advanced layouts and state management for more complex applications. This matters because it democratizes the deployment of machine learning models, making them accessible to a broader audience without the need for extensive technical expertise.

    Read Full Article: Gradio: Simplifying ML Web Interfaces

  • Exploring Programming Languages for AI


    Self-Hosted AI in Practice: My Journey with Ollama, Production Challenges, and Discovering KitOpsPython remains the leading programming language for machine learning due to its comprehensive libraries and user-friendly nature. For tasks requiring high performance, languages like C++ and Rust are favored, with C++ being ideal for inference and low-level optimizations, while Rust offers safety features. Julia, although noted for its performance, is not as widely adopted. Other languages such as Kotlin, Java, and C# are used for platform-specific applications, and Go, Swift, and Dart are chosen for their ability to compile to native code. R and SQL are essential for data analysis and management, and CUDA is utilized for GPU programming to enhance machine learning tasks. JavaScript is commonly used for full-stack machine learning projects, particularly those involving web interfaces. Understanding the strengths and applications of these languages is crucial for selecting the right tool for specific machine learning tasks.

    Read Full Article: Exploring Programming Languages for AI

  • Training GitHub Repository Embeddings with Stars


    [P] Training GitHub Repository Embeddings using StarsGitHub Stars, often used as bookmarks, provide valuable insights into which repositories are semantically similar. By processing approximately 1TB of raw data from GitHub Archive, an interest matrix for 4 million developers was created, leading to the training of embeddings for over 300,000 repositories using Metric Learning techniques. A client-only demo was developed that conducts vector searches directly in the browser via WebAssembly, eliminating the need for a backend. This system not only identifies non-obvious library alternatives but also facilitates semantic comparisons of developer profiles, offering a powerful tool for developers to explore and utilize GitHub repositories more effectively. This matters because it enhances the ability to discover and compare software projects and developer interests, potentially leading to more innovative and collaborative projects.

    Read Full Article: Training GitHub Repository Embeddings with Stars

  • Self-hosting Tensor-Native Language


    Self-hosting tensor native programming languageA new project introduces a self-hosting tensor-native programming language designed to enhance deterministic computing and tackle issues like CUDA lock-in by using Vulkan Compute. The language, which is still in development, features a self-hosting compiler written in HLX and emphasizes deterministic execution, ensuring that the same source code always results in the same bytecode hash. The bootstrap process involves compiling through several stages, ultimately proving the compiler's self-hosting capability and determinism through hash verification. This initiative aims to create a substrate for human-AI collaboration with verifiable outputs and first-class tensor operations, inviting community feedback and contributions to further its development. This matters because it offers a potential solution for deterministic computing and reproducibility in machine learning, which are critical for reliable AI development and collaboration.

    Read Full Article: Self-hosting Tensor-Native Language

  • Programming Languages for AI/ML


    Cybersecurity Focussed AI/MLPython remains the dominant programming language for machine learning and AI due to its extensive libraries, ease of use, and versatility. However, for performance-critical tasks, languages like C++ and Rust are preferred for their optimization capabilities and safety features. Julia, Kotlin, Java, C#, Go, Swift, and Dart are also utilized for specific applications, such as platform-specific ML tasks or when native code performance is needed. Additionally, R and SQL are important for statistical analysis and data management, while CUDA is employed for GPU programming to enhance ML task performance. Understanding the strengths and applications of these languages is crucial for optimizing machine learning and AI projects.

    Read Full Article: Programming Languages for AI/ML

  • Plotly’s Impressive Charts and Frustrating Learning Curve


    Plotly charts look impressive — but learning Plotly felt… frustrating.Python remains the dominant language for machine learning due to its extensive libraries and versatility, but other languages are also important depending on the task. C++ and Rust are favored for performance-critical tasks, with Rust offering additional safety features. Julia, although not widely adopted, is noted for its performance, while Kotlin, Java, and C# are used for platform-specific applications. High-level languages like Go, Swift, and Dart are chosen for their ability to compile to native code, enhancing performance. R and SQL are crucial for statistical analysis and data management, while CUDA is essential for GPU programming. JavaScript is commonly used in full-stack projects involving machine learning, particularly for web interfaces. Understanding the strengths of these languages helps in selecting the right tool for specific machine learning applications.

    Read Full Article: Plotly’s Impressive Charts and Frustrating Learning Curve

  • Backend Agnostic Support for Kimi-Linear-48B-A3B


    Backend agnostic llama.cpp support for Kimi-Linear-48B-A3BThe new implementation of backend agnostic support for Kimi-Linear-48B-A3B using llama.cpp now extends functionality beyond just CPU and CUDA, allowing it to operate on all platforms. This is achieved through a ggml-only version, which can be accessed and downloaded from Hugging Face and GitHub. The development was made possible with contributions from various developers, enhancing accessibility and usability across different systems. This matters because it broadens the scope of platform compatibility, enabling more users to leverage the model's capabilities.

    Read Full Article: Backend Agnostic Support for Kimi-Linear-48B-A3B

  • Guide to Programming Languages for ML


    Gaussian Process Regression TutorialPython remains the leading programming language for machine learning due to its extensive libraries and versatility, making it ideal for a wide range of applications. For tasks requiring high performance, languages like C++, Rust, and Julia are preferred, with C++ being favored for low-level optimizations and Rust for its safety features. Other languages such as Kotlin, Java, and C# are used for platform-specific applications, while Go, Swift, and Dart offer native code compilation for improved performance. R and SQL are integral for statistical analysis and data management, and CUDA is essential for GPU programming to enhance machine learning tasks. JavaScript is often chosen for full-stack projects involving web interfaces. Understanding the strengths of each language helps in selecting the right tool for specific machine learning needs.

    Read Full Article: Guide to Programming Languages for ML