model capacity

  • R-GQA: Enhancing Long-Context Model Efficiency


    [Research] I implemented a routed attention mechanism (R-GQA) for faster long-context models. Then wrote a paper on it.Routed Grouped-Query Attention (R-GQA) is a novel mechanism designed to enhance the efficiency of long-context models by using a learned router to select the most relevant query heads, thereby reducing redundant computations. Unlike traditional Grouped-Query Attention (GQA), R-GQA promotes head specialization by ensuring orthogonality among query heads, leading to a significant improvement in training throughput by up to 40%. However, while R-GQA shows promise in terms of speed, it falls short in performance against similar models like SwitchHead, particularly at larger scales where aggressive sparsity limits capacity. The research provides valuable insights into model efficiency and specialization, despite not yet achieving state-of-the-art status. The findings highlight the potential for improved model architectures that balance efficiency and capacity.

    Read Full Article: R-GQA: Enhancing Long-Context Model Efficiency