AI innovation

  • 3D Furniture Models with LLaMA 3.1


    Gen 3D with local llmAn innovative project has explored the potential of open-source language models like LLaMA 3.1 to generate 3D furniture models, pushing these models beyond text to create complex 3D mesh structures. The project involved fine-tuning LLaMA with a 20k token context length to handle the intricate geometry of furniture, using a specialized dataset of furniture categories such as sofas, cabinets, chairs, and tables. Utilizing GPU infrastructure from verda.com, the model was trained to produce detailed mesh representations, with results available for viewing on llm3d.space. This advancement showcases the potential for language models to contribute to fields like e-commerce, interior design, AR/VR applications, and gaming by bridging natural language understanding with 3D content creation. This matters because it demonstrates the expanding capabilities of AI in generating complex, real-world applications beyond traditional text processing.

    Read Full Article: 3D Furniture Models with LLaMA 3.1

  • Advancements in Local LLMs: Trends and Innovations


    Build a Local Voice Agent Using LangChain, Ollama & OpenAI WhisperIn 2025, the local LLM landscape has evolved with notable advancements in AI technology. The llama.cpp has become the preferred choice for many users over other LLM runners like Ollama due to its enhanced performance and seamless integration with Llama models. Mixture of Experts (MoE) models have gained traction for efficiently running large models on consumer hardware, striking a balance between performance and resource usage. New local LLMs with improved capabilities and vision features are enabling more complex applications, while Retrieval-Augmented Generation (RAG) systems mimic continuous learning by incorporating external knowledge bases. Additionally, advancements in high-VRAM hardware are facilitating the use of more sophisticated models on consumer machines. This matters as it highlights the ongoing innovation and accessibility of AI technologies, empowering users to leverage advanced models on local devices.

    Read Full Article: Advancements in Local LLMs: Trends and Innovations

  • Pros and Cons of AI


    Advantages and Disadvantages of Artificial IntelligenceArtificial intelligence is revolutionizing various sectors by automating routine tasks and tackling complex problems, leading to increased efficiency and innovation. However, while AI offers significant benefits, such as improved decision-making and cost savings, it also presents challenges, including ethical concerns, potential job displacement, and the risk of biases in decision-making processes. Balancing the advantages and disadvantages of AI is crucial to harness its full potential while mitigating risks. Understanding the impact of AI is essential as it continues to shape the future of industries and society at large.

    Read Full Article: Pros and Cons of AI

  • Running SOTA Models on Older Workstations


    Surprised you can run SOTA models on 10+ year old (cheap) workstation with usable tps, no need to break the bank.Running state-of-the-art models on older, cost-effective workstations is feasible with the right setup. Utilizing a Dell T7910 with a physical CPU (E5-2673 v4, 40 cores), 128GB RAM, dual RTX 3090 GPUs, and NVMe disks with PCIe passthrough, it's possible to achieve usable tokens per second (tps) speeds. Models like MiniMax-M2.1-UD-Q5_K_XL, Qwen3-235B-A22B-Thinking-2507-UD-Q4_K_XL, and GLM-4.7-UD-Q3_K_XL can run at 7.9, 6.1, and 5.5 tps respectively. This demonstrates that high-performance AI workloads can be managed without investing in the latest hardware, making advanced AI more accessible.

    Read Full Article: Running SOTA Models on Older Workstations

  • Sophia: Persistent LLM Agents with Narrative Identity


    [R] Sophia: A Framework for Persistent LLM Agents with Narrative Identity and Self-Driven Task ManagementSophia introduces a novel framework for AI agents by incorporating a "System 3" layer to address the limitations of current System 1 and System 2 architectures, which often result in agents that are reactive and lack memory. This new layer allows agents to maintain a continuous autobiographical record, ensuring a consistent narrative identity over time. By transforming repetitive tasks into self-driven processes, Sophia reduces the need for deliberation by approximately 80%, enhancing efficiency. The framework also employs a hybrid reward system to promote autonomous behavior, enabling agents to function more like long-lived entities rather than just responding to human prompts. This matters because it advances the development of AI agents that can operate independently and maintain a coherent identity over extended periods.

    Read Full Article: Sophia: Persistent LLM Agents with Narrative Identity