consumer hardware

  • Qwen3-30B Model Runs on Raspberry Pi in Real Time


    A 30B Qwen Model Walks Into a Raspberry Pi… and Runs in Real TimeThe ShapeLearn GGUF release introduces the Qwen3-30B-A3B-Instruct-2507 model, which runs efficiently on small hardware like a Raspberry Pi 5 with 16GB RAM, achieving 8.03 tokens per second while maintaining 94.18% of BF16 quality. Instead of focusing solely on reducing model size, the approach optimizes for tokens per second (TPS) without sacrificing output quality, revealing that different quantization formats impact performance differently on CPUs and GPUs. On CPUs, smaller models generally run faster, while on GPUs, performance is influenced by kernel choices, with certain configurations offering optimal results. Feedback and testing from the community are encouraged to further refine evaluation processes and adapt the model for various setups and workloads. This matters because it demonstrates the potential for advanced AI models to run efficiently on consumer-grade hardware, broadening accessibility and application possibilities.

    Read Full Article: Qwen3-30B Model Runs on Raspberry Pi in Real Time

  • 15M Param Model Achieves 24% on ARC-AGI-2


    15M param model solving 24% of ARC-AGI-2 (Hard Eval). Runs on consumer hardware.Bitterbot AI has introduced TOPAS-DSPL, a compact recursive model with approximately 15 million parameters, achieving 24% accuracy on the ARC-AGI-2 evaluation set, a significant improvement over the previous state-of-the-art (SOTA) of 8% for models of similar size. The model employs a "Bicameral" architecture, dividing tasks into a Logic Stream for algorithm planning and a Canvas Stream for execution, effectively addressing compositional drift issues found in standard transformers. Additionally, Test-Time Training (TTT) is used to fine-tune the model on specific examples before solution generation. The entire pipeline, including data generation, training, and evaluation, has been open-sourced, allowing for community verification and potential reproduction of results on consumer hardware like the 4090 GPU. This matters because it demonstrates significant advancements in model efficiency and accuracy, making sophisticated AI more accessible and verifiable.

    Read Full Article: 15M Param Model Achieves 24% on ARC-AGI-2

  • Naver Launches HyperCLOVA X SEED Models


    Naver (South Korean internet giant), has just launched HyperCLOVA X SEED Think, a 32B open weights reasoning model and HyperCLOVA X SEED 8B Omni, a unified multimodal model that brings text, vision, and speech togetherNaver has introduced HyperCLOVA X SEED Think, a 32-billion parameter open weights reasoning model, and HyperCLOVA X SEED 8B Omni, a unified multimodal model that integrates text, vision, and speech. These advancements are part of a broader trend in 2025 where local language models (LLMs) are evolving rapidly, with llama.cpp gaining popularity for its performance and flexibility. Mixture of Experts (MoE) models are becoming favored for their efficiency on consumer hardware, while new local LLMs are enhancing capabilities in vision and multimodal applications. Additionally, Retrieval-Augmented Generation (RAG) systems are being used to mimic continuous learning, and advancements in high-VRAM hardware are expanding the potential of local models. This matters because it highlights the ongoing innovation and accessibility in AI technologies, making advanced capabilities more available to a wider range of users.

    Read Full Article: Naver Launches HyperCLOVA X SEED Models

  • Tencent’s WeDLM 8B Instruct on Hugging Face


    Tencent just released WeDLM 8B Instruct on Hugging FaceIn 2025, significant advancements in Llama AI technology and local large language models (LLMs) have been observed. The llama.cpp has become the preferred choice for many users due to its superior performance and flexibility, as well as its direct integration with Llama models. Mixture of Experts (MoE) models are gaining popularity for their efficient use of consumer hardware, balancing performance with resource usage. New local LLMs with enhanced vision and multimodal capabilities are emerging, offering improved versatility for various applications. Although continuous retraining of LLMs is challenging, Retrieval-Augmented Generation (RAG) systems are being used to mimic continuous learning by integrating external knowledge bases. Advances in high-VRAM hardware are enabling the use of larger models on consumer-grade machines, expanding the potential of local LLMs. This matters because it highlights the rapid evolution and accessibility of AI technologies, which can significantly impact various industries and consumer applications.

    Read Full Article: Tencent’s WeDLM 8B Instruct on Hugging Face

  • Advancements in Local LLMs and MoE Models


    original KEFv3.2 link, v4.1 with mutation parameter , test it , puplic domain, freewareSignificant advancements in the local Large Language Model (LLM) landscape have emerged in 2025, with notable developments such as the dominance of llama.cpp due to its superior performance and integration with Llama models. The rise of Mixture of Experts (MoE) models has allowed for efficient running of large models on consumer hardware, balancing performance and resource usage. New local LLMs with enhanced vision and multimodal capabilities are expanding the range of applications, while Retrieval-Augmented Generation (RAG) is being used to simulate continuous learning by integrating external knowledge bases. Additionally, investments in high-VRAM hardware are enabling the use of larger and more complex models on consumer-grade machines. This matters as it highlights the rapid evolution of AI technology and its increasing accessibility to a broader range of users and applications.

    Read Full Article: Advancements in Local LLMs and MoE Models

  • Advancements in Local LLMs and AI Hardware


    SOCAMM2 - new(ish), screwable (replaceable, non soldered) LPDDR5X RAM standard intended for AI data centers.Recent advancements in AI technology, particularly within the local LLM landscape, have been marked by the dominance of llama.cpp, a tool favored for its superior performance and flexibility in integrating Llama models. The rise of Mixture of Experts (MoE) models has enabled the operation of large models on consumer hardware, balancing performance with resource efficiency. New local LLMs are emerging with enhanced capabilities, including vision and multimodal functionalities, which are crucial for more complex applications. Additionally, while continuous retraining of LLMs remains difficult, Retrieval-Augmented Generation (RAG) systems are being employed to simulate continuous learning by incorporating external knowledge bases. These developments, alongside significant investments in high-VRAM hardware, are pushing the limits of what can be achieved on consumer-grade machines. Why this matters: These advancements are crucial as they enhance AI capabilities, making powerful tools more accessible and efficient for a wider range of applications, including those on consumer hardware.

    Read Full Article: Advancements in Local LLMs and AI Hardware

  • Vector-Based Prompts Enhance LLM Response Quality


    Series Update: Vector-Based System Prompts Substantially Improve Response Quality in Open-Weight LLMs – New Preprint (Dec 23, 2025) + GitHub ArtifactsRecent advancements in vector-based system prompts have significantly enhanced the response quality of open-weight large language models (LLMs) without the need for fine-tuning or external tools. By using lightweight YAML system prompts to set immutable values like compassion and truth, and allowing behavioral scalars such as curiosity and clarity to be adjustable, the study achieved notable improvements in response metrics. These include a 37.8% increase in response length, a 60% rise in positive sentiment, and a 66.7% boost in structured formatting. The approach, tested on the GPT-OSS-120B MXFP4 model, also resulted in a remarkable 1100% increase in self-reflective notes, all while maintaining factual accuracy and lexical diversity comparable to the baseline. This method simplifies earlier complex techniques into a portable scalar-vector approach, making it easily applicable across various LLMs like Gemma, Llama-3.3, and GPT-OSS. The research invites feedback on the practical implications of these enhancements, particularly in domains such as coding assistance and safety testing, and explores preferences for using YAML, JSON, or plain text for prompt injection. This matters because it demonstrates a scalable and accessible way to improve AI alignment and response quality using consumer-grade hardware.

    Read Full Article: Vector-Based Prompts Enhance LLM Response Quality