token processing
-
Benchmarking 4-bit Quantization in vLLM
Read Full Article: Benchmarking 4-bit Quantization in vLLM
A comprehensive analysis of vLLM quantization methods reveals varied performance across different techniques. Marlin achieved the highest token processing speed at 712 tokens per second, significantly outperforming the baseline FP16's 461 tok/s, while GPTQ without Marlin's kernel lagged behind at 276 tok/s. BitsandBytes maintained the smallest quality drop and required no pre-quantized weights, whereas GGUF had the worst perplexity but excelled in HumanEval scores. AWQ showed unexpectedly slow performance in vLLM, processing only 67 tok/s. Understanding these differences is crucial for optimizing model efficiency and performance in machine learning applications.
-
RTX PRO 6000 Performance with MiniMax M2.1
Read Full Article: RTX PRO 6000 Performance with MiniMax M2.1
The performance of the RTX PRO 6000 when running the MiniMax M2.1 model varies significantly based on the context size. Using llama-server with specific parameters, the model's prompt evaluation speed ranged from 23.09 to 1695.32 tokens per second, while the evaluation speed ranged from 30.02 to 91.17 tokens per second. The data indicates that larger context sizes result in slower processing speeds for both prompt and general evaluations. Understanding these speed variations is crucial for optimizing model performance and resource allocation in machine learning applications.
