reinforcement learning
-
Decision Matrices for Multi-Agent Systems
Read Full Article: Decision Matrices for Multi-Agent Systems
Choosing the right decision-making method for multi-agent systems can be challenging due to the lack of a systematic framework. Key considerations include whether trajectory stitching is needed when comparing Behavioral Cloning (BC) to Reinforcement Learning (RL), whether agents receive the same signals when using Copulas, and whether coverage guarantees are important when deciding between Conformal Prediction and Bootstrap methods. Additionally, the choice between Monte Carlo (MC) and Monte Carlo Tree Search (MCTS) depends on whether decisions are sequential or one-shot. Understanding the specific characteristics of a problem is crucial in selecting the most appropriate method, as demonstrated through validation on a public dataset. This matters because it helps optimize decision-making in complex systems, leading to more effective and efficient outcomes.
-
Tencent’s HY-Motion 1.0: Text-to-3D Motion Model
Read Full Article: Tencent’s HY-Motion 1.0: Text-to-3D Motion Model
Tencent Hunyuan's 3D Digital Human team has introduced HY-Motion 1.0, a billion-parameter text-to-3D motion generation model built on the Diffusion Transformer (DiT) architecture with Flow Matching. This model translates natural language prompts into 3D human motion clips using a unified SMPL-H skeleton, making it suitable for digital humans, game characters, and cinematics. The model is trained on a vast dataset of over 3,000 hours of motion data, including high-quality motion capture and animation assets, and is designed to improve instruction following and motion realism through reinforcement learning techniques. HY-Motion 1.0 is available on GitHub and Hugging Face, offering developers tools and interfaces for integration into various animation and game development pipelines. Why this matters: HY-Motion 1.0 represents a significant advancement in AI-driven 3D animation, enabling more realistic and diverse character motions from simple text prompts, which can enhance digital content creation across industries.
-
Training AI Co-Scientists with Rubric Rewards
Read Full Article: Training AI Co-Scientists with Rubric Rewards
Meta has introduced a scalable method to train AI systems to aid scientists in reaching their research objectives by leveraging large language models (LLMs) to extract research goals and grading rubrics from scientific literature. These rubrics are then used in reinforcement learning (RL) training, where the AI self-grades its progress to bridge the generator-verifier gap. Fine-tuning the Qwen3-30B model with this self-grading approach has shown to enhance research plans for 70% of machine learning goals, achieving results comparable to Grok-4-Thinking, though GPT-5-Thinking remains superior. This approach also demonstrates significant cross-domain generalization, supporting the potential of AI as versatile co-scientists. This matters because it highlights the potential for AI to significantly enhance scientific research processes across various domains.
-
Fine-tuning LM for Browser Control with GRPO
Read Full Article: Fine-tuning LM for Browser Control with GRPO
Fine-tuning a small language model (LM) for browser control involves using reinforcement learning techniques to teach the model how to navigate websites and perform tasks such as clicking buttons, filling forms, and booking flights. This process leverages tools like GRPO, BrowserGym, and LFM2-350M to create a training pipeline that starts with basic tasks and progressively scales in complexity. The approach focuses on learning through trial and error rather than relying on perfect demonstrations, allowing the model to develop practical skills for interacting with web environments. This matters because it opens up possibilities for automating complex web tasks, enhancing efficiency and accessibility in digital interactions.
-
Reinforcement Learning for Traffic Efficiency
Read Full Article: Reinforcement Learning for Traffic Efficiency
Deploying 100 reinforcement learning (RL)-controlled autonomous vehicles (AVs) into rush-hour highway traffic has shown promising results in smoothing congestion and reducing fuel consumption. These AVs, trained through data-driven simulations, effectively dampen "stop-and-go" waves, which are common traffic disruptions causing energy inefficiency and increased emissions. The RL agents, operating with basic sensor inputs, adjust driving behavior to maintain flow and safety, achieving up to 20% fuel savings even with a small percentage of AVs on the road. This large-scale experiment demonstrates the potential of AVs to enhance traffic efficiency without requiring extensive infrastructure changes, paving the way for more sustainable and smoother highways. This matters because it offers a scalable solution to reduce traffic congestion and its associated environmental impacts.
-
Liquid AI’s LFM2-2.6B-Exp: Compact AI Model
Read Full Article: Liquid AI’s LFM2-2.6B-Exp: Compact AI Model
Liquid AI's LFM2-2.6B-Exp is an experimental checkpoint of the LFM2-2.6B language model, enhanced with pure reinforcement learning to improve instruction following, knowledge tasks, and math capabilities. This model maintains the same architecture as its predecessor, which features a hybrid design of convolution and attention layers, optimized for efficient deployment on edge devices. Despite its compact size, LFM2-2.6B-Exp outperforms larger models on benchmarks like IFBench, demonstrating its strong performance per parameter. Released under an open license, it is well-suited for applications requiring a compact yet capable model, such as on-device assistants and structured data extraction. This matters as it shows how smaller models can achieve high efficiency and performance, making advanced AI more accessible for edge devices.
-
Building a Board Game with TFLite Plugin for Flutter
Read Full Article: Building a Board Game with TFLite Plugin for Flutter
The article discusses the process of creating a board game using the TensorFlow Lite plugin for Flutter, enabling cross-platform compatibility for both Android and iOS. By leveraging a pre-trained reinforcement learning model with TensorFlow and converting it to TensorFlow Lite, developers can integrate it into a Flutter app with additional frontend code to render game boards and track progress. The tutorial encourages developers to experiment further by converting models trained with TensorFlow Agents to TensorFlow Lite and applying reinforcement learning techniques to new games, such as tic-tac-toe, using the Flutter Casual Games Toolkit. This matters because it demonstrates how developers can use machine learning models in cross-platform mobile applications, expanding the possibilities for game development.
-
Free ML/DL/AI PDFs GitHub Repo
Read Full Article: Free ML/DL/AI PDFs GitHub Repo
A comprehensive GitHub repository has been created to provide free access to a vast collection of resources related to Machine Learning (ML), Deep Learning (DL), and Artificial Intelligence (AI). This repository includes a wide range of materials such as books, theory notes, roadmaps, interview preparation guides, and foundational knowledge in statistics, natural language processing (NLP), computer vision (CV), reinforcement learning (RL), Python, and mathematics. The resources are organized from beginner to advanced levels and are continuously updated to reflect ongoing learning. This initiative aims to consolidate scattered learning materials into a single, well-structured repository, making it easier for others to access and benefit from these educational resources. Everything in the repository is free, providing an invaluable resource for anyone interested in expanding their knowledge in these fields. This matters because it democratizes access to high-quality educational resources, enabling more people to learn and advance in the fields of ML, DL, and AI without financial barriers.
-
Adapting Agentic AI: New Framework from Stanford & Harvard
Read Full Article: Adapting Agentic AI: New Framework from Stanford & Harvard
Agentic AI systems, which build upon large language models by integrating tools, memory, and external environments, are currently used in various fields such as scientific discovery and software development. However, they face challenges like unreliable tool use and poor long-term planning. Research from Stanford, Harvard, and other institutions proposes a unified framework for adapting these systems, focusing on a foundation model agent with components for planning, tool use, and memory. This model adapts through techniques like supervised fine-tuning and reinforcement learning, aiming to enhance the AI's ability to plan and utilize tools effectively. The framework defines four adaptation paradigms based on two dimensions: whether adaptation targets the agent or tools, and whether the supervision signal comes from tool execution or final agent outputs. A1 and A2 paradigms focus on agent adaptation, with A1 using feedback from tool execution and A2 relying on final output signals. T1 and T2 paradigms concentrate on tool adaptation, with T1 optimizing tools independently of the agent and T2 adapting tools under a fixed agent. This structured approach helps in understanding and improving the interaction between agents and tools, ensuring more reliable AI performance. Key takeaways include the importance of combining different adaptation methods for robust and scalable AI systems. A1 methods like Toolformer and DeepRetrieval adapt agents using verifiable tool feedback, while A2 methods optimize agents based on final output accuracy. T1 and T2 paradigms focus on training tools and memory, with T1 developing broadly useful retrievers and T2 adapting tools under a fixed agent. The research suggests that practical systems will benefit from rare agent updates combined with frequent tool adaptations, enhancing both robustness and scalability. This matters because improving the reliability and adaptability of agentic AI systems can significantly enhance their real-world applications and effectiveness.
